EXHIBIT VIII.C.17.d.

ROADWAY AND TRAFFIC IMPROVEMENTS

In summary, the Gaming Facility will generate less peak hour traffic than the permitted de Laet's Landing project. Please see Exhibit VIII.C.17.d for a Traffic Assessment completed by the Applicant's engineer.

A few recommendations are suggested to enhance the overall transportation environment for the project including:

- Reconstruct the site driveway/access to provide for two entering and exiting lanes.
- Retime/optimize all the traffic signals along Broadway to adjust to the new traffic patterns associated with the Gaming Facility development.
- Based on market conditions, develop shuttle services aimed at transporting patrons between the Project site and the nearby Albany/Rensselaer Amtrak train station. Consider shuttle services for other transit hubs in the vicinity of the project site.
- Based on market conditions, coordinate with the Capital District Transit Authority (CDTA) to identify
 potential route changes that could bring a bus line into (or near) the development. Currently, the 114
 Neighborhood Route (Madison/Washington) travels along Broadway near the site.
- Continue to work with the New York Department of Transportation and the City of Rensselaer to enhance and promote the use of the riverfront area as an asset for the site and the surrounding land uses.

For more details on potential roadway and traffic improvements, please see Section 3.8 of the FGEIS, as well as the Traffic Impact Study in Appendix H. Please also see VHB's traffic memorandum for an updated assessment of potential roadway and traffic improvements for the proposed project.

Attached to this exhibit, please find a traffic memo from VHB, which provides a recent assessment of recommended roadway and traffic improvements.

Transportation Land Development Environmental Services

100 Great Oaks Boulevard

Suite 118

Albany, NY 12203 518-389-3600

FAX 518-452-0324

Memorandum To: NYS Funding LLC

c/ o Och-Ziff Real Estate 9 West 57th Street – 39th Floor New York, NY 10019 Date: June 23, 2014

Project No.: 29266.00

From: Robert L. Nagi, PE

Principal, Transportation Planning &

Operations

Re: Potential Casino Development

Rensselaer, NY

Transportation Assessment

Vanasse Hangen Brustlin, Inc. (VHB) has prepared this technical memorandum to summarize our evaluation of the traffic impacts and potential off-site roadway infrastructure needs associated with the development of the Van Rensselaer Site on Broadway in Rensselaer, NY (the "Site") as a resort casino project.

The purpose of this technical memorandum is to summarize the prior history of development proposals on this site and its impacts as they relate to the transportation environment, identify the transportation-related impacts associated with the currently proposed casino development, and outline any mitigation measures needed to address the project's impacts on the surrounding roadway network.

PROJECT DESCRIPTION

The approximately 24-acre Site is located adjacent to the Hudson River along Broadway, just north of the Dunn Memorial Bridge (Routes 9 & 20). An Amtrak station/rail yard abuts the site to the north. The site was formerly occupied by Rensselaer High School, which has been relocated. Currently, the site is undeveloped.

Prior plans for the Site included a mixed-use project referred to as the "Rensselaer Waterfront Redevelopment" project. This redevelopment project was originally presented back in 2008 and was proposed to include 165,000± sf retail space, 250,000± s.f. of office space, 515 residential units (low-rise and high-rise condominium townhouse units), and a 300 room hotel. Collectively in this document, this will be referred to as the "Mixed-Use Proposal".

The current development proposal has been defined as a resort-style casino that includes a gaming area which can support up to 1,950 gaming positions (approx. 1,650 slot machines and 50 table games, each with six seats), the potential for two restaurants, and a 100-room hotel. Approximately 1,500 parking spaces are anticipated to support the development which will be

¹ Note: the proposed development program will include 1,500 slot machines. For the purposes of this traffic evaluation, the total number of slot machines has been increased by 10% (1,650 total) and analyzed to provide some flexibility in the final number of gaming positions.

accommodated in a surface parking area with some additional off-site options. Collectively, this is referred to as the "Project".

SITE HISTORY

The Site was previously permitted for the mixed-use Rensselaer Waterfront Redevelopment through the New York State Environmental Quality Review (SEQR) process. In 2009, a Final Generic Environmental Impact Statement (FEIS) was filed and found complete. As noted previously, that project included the following elements:

- $165,000\pm$ sf retail space,
- $250,000 \pm \text{ s.f.}$ of office space,
- 515 residential units (low-rise and high-rise condominium townhouse units), and
- a 300 room hotel.

The transportation impacts of that development were identified through the SEQR process in the EIS submissions and through discussions with the City of Rensselaer and County. The focus of the EIS's transportation study² area concentrated on the following six primary intersections:

- Broadway/ Columbia Turnpike (Signalized)
- > Broadway/ Third Avenue/ Route 9 & 20 On-Ramp (Signalized)
- ➤ Broadway/ Route 9 & 20 Off-Ramp (Signalized)
- ➤ Broadway/ Herrick Street (Unsignalized at time of FEIS filing)
- Broadway/ John Elvis Boulevard (Signalized)
- Broadway / Partition Street (Signalized)

Trip Generation

Trip generation estimates for the Mixed Use Proposal presented in the TIS utilized standard Institute of Transportation Engineers (ITE) Trip Generation methodology³. To account for potential market variability, the Mixed Use Proposal considered a potential increase of 30-percent, or 49,500 square feet, in retail space (and a corresponding reduction in office space) as an alternative development scenario. This development scenario generates higher daily and peak hour traffic volumes and was therefore used as the basis of the analysis.

By virtue of the mixed-use nature of the proposal, the study also considered the impacts of internal trip credits, mode share implications, and pass-by trips to develop total 'net-new' trips to the Site. The resulting gross trips and net new trips are summarized in Table 1 below. As shown, the Mixed Use Proposal was projected to generate approximately 828 weekday morning and 1,278 weekday evening new peak hour trips.

² Rensselaer Waterfront Redevelopment Final Generic Environmental Impact Statement (FEIS) Appendix H - Traffic Impact Study (TIS); SRF Associates; October 2008.

³ Institute of Transportation Engineers, Trip Generation, Seventh Edition, Washington DC.

Table 1: Previous Proposal Trip Generation Estimate

Condition	Gross Trips	Net New Trips
Daily ^a	n/a	n/a
AM Peak Hour ^b		
Enter	585	483
<u>Exit</u>	<u>418</u>	<u>345</u>
Total	1,003	828
PM Peak Hour ^b		
Enter	829	581
<u>Exit</u>	<u>988</u>	<u>697</u>
Total	1,817	1,278

Source: Rensselaer Waterfront Redevelopment TIS

Mitigation

To address project impacts, the Mixed Use Proposal committed to several mitigation measures aimed at addressing the traffic impacts associated with the overall project development. Since the publication and acceptance of the FEIS, the City of Rensselaer undertook an \$11 million reconstruction project focused on the Broadway Corridor. The project included an update and restoration effort focused on the Broadway Viaduct Bridge over the Amtrak rail lines. This upgrade included new curbing, sidewalks, bridge decks, drainage upgrades, improvements to pedestrian facilities, traffic signals, landscaping, waterlines, and the sanitary sewer. Many of the mitigation actions identified in the FEIS were addressed in this NYDOT and Division of Housing and Community Renewal-sponsored project.

In summary, the following mitigation measures were identified in the FEIS as being needed to support the Mixed-Use Development project:

- ➤ Columbia Street /Broadway: Signal timing adjustments/ optimization.
- ➤ Third Avenue/Broadway: Signal timing adjustments/ optimization
- **Route 9 & 20 Off-Ramp/Broadway:** Signal timing adjustments/ optimization
- > Herrick Street I Broadway: Install a traffic signal. Completed as part of the Broadway Reconstruction
- **Partition Street /Broadway:** Signal timing adjustments/ optimization
- ➤ **Broadway/New Broadway:** Reconfigure intersection and add turning lanes *Completed* as part of the Broadway Reconstruction.

With the majority of the Broadway Corridor having already been upgraded, many of the remaining efforts (signal timing adjustments and optimization) will still be required. Figure 1 notes where the project is in relation to the surrounding roadway network.

a vehicle trips / day

b vehicle trips per hour

⁴ Rensselaer Waterfront Redevelopment Final Generic Environmental Impact Statement (FEIS) Findings Statement, 2009.

CURRENT DEVELOPMENT PROPOSAL

As discussed above, the current Project envisions a resort style casino that includes a gaming area, several restaurants, and a hotel. In addition, approximately 1,500 on-site parking spaces would be provided in a garage and/ or surface lots. A site plan is attached elsewhere in this submission.

Access to the site will be provided via a single driveway located along Broadway (at its intersection with the viaduct bridge) and will be designed to accommodate the various access needs of the public roadway system and site development.

Existing Traffic Volumes

For this development proposal, manual turning movement counts were conducted at the six study area intersections noted previously on weekday evenings to identify if any changes to the underlying assumption contained in the 2008 EIS. VHB collected traffic volume data in June 2014 at the six study area intersections to coincide with the critical analysis periods discussed below. The data was collected on a Thursday from 4:00 to 6:00 PM and on a Friday from 5:00 to 7:00 PM. The traffic count data is included as an attachment to this memorandum.

A review of the 2014 data indicates that traffic volumes have not grown since the 2007 data collection effort to support the Mixed Use Proposal. In fact, the total entering volumes at all six study area intersections have grown by virtually nothing (0.0-percent) from 2007 to 2014 in the weekday evening peak hour. Friday traffic volume are approximately 15-percent <u>lower</u> than collected 2007 weekday evening peak hour volumes. Based on the traffic counts conducted, the peak hour for the Broadway corridor runs from about 4:45 to 5:45 pm.

Moreover, both the weekday evening and Friday peak hour observed traffic patterns are consistent with data collected in 2007 (i.e. no one movement saw significant growth while another movement declined). Based on this finding, the prior 2007 analysis conducted and presented in the traffic study portion of the prior EIS remains consistent with current 2014 observations.

Selection of Analysis Peak Hour

As part of this analysis, VHB researched several casino-related traffic reports that were provided as "similar in nature" to the Project under consideration. Similarly, VHB also utilized previous research efforts that were conducted for other Resort-style casino developments in the Northeast. Almost all of the reports concluded that the Saturday peak hour is the largest generator of traffic for casino-based projects. However, they also identified the weekday evening peak hour as the typical critical analysis peak (the combination of commuter traffic and casino-based traffic is at its highest point during these times). In observing traffic conditions throughout the Project's study area, VHB has concluded that the weekday evening peak hour condition should be considered the "design" condition for the Project, although the Saturday peak hour will also present some challenges associated with different traffic patterns and will ultimately need to be studied in more depth, if needed.

Trip Generation

A critical component of the preliminary analysis is defining how much traffic could potentially be generated by the Project. Identifying the volume of daily and peak hour volume will help to define the scope and magnitude of traffic improvements needed to support the project's access needs and define the study area that will ultimately need to be considered for the project.

Date: June 23, 2014 Project No.: 29266.00

Trip-generating characteristics for proposed developments are typically determined based on trip generation rates published by the Institute of Transportation Engineers (ITE) in Trip Generation⁵. A review of the ITE manual indicated that it includes Casino/ Video Lottery Establishment (Land Use Code [LUC] 473) as one of the land uses in its database.

However, a close review of the data points in the ITE manual indicated that the trip rates for the land use are based on survey of establishments ranging from 600 sf to 2,400 sf that was conducted in South Dakota in the 1990's. The manual described the land use as comprising of establishments that provide electronic or manually controlled slot machines, and that they do not represent full services casinos or casino/ hotel facilities. Based on the information reviewed, VHB determined that ITE LUC 473 is 'helpful' in defining the traffic impacts of a project of this magnitude, but is ultimately not an appropriate land use code for estimating the trip generation for the Project.

Therefore, in lieu of using ITE rates, VHB obtained empirical trip generation data which is based on actual traffic counts conducted at existing casino sites in the United States. In addition, VHB has a database of publically available information from other casino projects across the country 6, each with its own unique description and characteristics and surrounding demographics. It should be noted that each of the studies that were obtained on-line relied on data collected at several existing casinos of various types and configurations and not the ITE data.

Not surprisingly, developments of this type rely on an integrated combination of land uses to bring together the experience for their patrons. While the casino and gaming floor is the main 'attraction' of the development, the other land uses on the site all play a role in creating a positive experience for the visitors to the site. For example, it is expected that the restaurant uses and hotel on the site will primarily be used by visitors to the casino. That's not to suggest that someone could come to the restaurant and not go to the gaming floor, but it's unlikely that this would be the majority of the visitors.

It is VHB's opinion that the information below provides for a reasonable approximation for the basis for the preparation of this analysis. Should the specific tenant provide any additional information at a later date that would suggest that the trip rates are different from VHB's estimates; the analysis could be revised to reflect the new data. That said, VHB believes that these trip estimates are conservatively high for a project of this magnitude.

Table 2 below shows the peak hour trip generation estimates for the Project. A tabulation of trip rates from record documents reviewed for the preparation of this analysis is included in the attachment to this memorandum.

⁵ Institute of Transportation Engineers, Trip Generation, Eighth Edition, Washington DC.

⁶ Traffic Impact & Access Study, Hard Rock Racino at Northfield Park, provided by the Client via an e-mail dated 5/19/2014

Table 2: Trip Generation Estimate *

Condition	Average Thursday	Average Friday	Average Saturday
Daily ^a			
Enter	6,450	9,800	10,000
<u>Exit</u>	<u>6,450</u>	<u>9,800</u>	<u>10,000</u>
Total	12,900	19,600	20,000
AM Peak Hour ^b			
Enter	175	305	210
<u>Exit</u>	<u>65</u>	<u>120</u>	<u>80</u>
Total	240	425	290
PM Peak Hour °			
Enter	405	555	520
<u>Exit</u>	<u>375</u>	<u>515</u>	<u>480</u>
Total	780	1,070	1,000
Site Peak Hour d			
Enter	445	785	740
<u>Exit</u>	<u>415</u>	<u>730</u>	<u>685</u>
Total	860	1,515	1,425

a customer vehicle trips / day

As indicated in Table 2, the Project analyzed included 1,950 gaming positions⁷, restaurant space, and a hotel of up to 100 rooms would be expected to result in a Saturday peak hour trip generation of approximately 1,425 vehicles per hour. On the critical weekday evening peak hour, the estimate is 1,070 vehicle trips. As noted, the weekday evening peak hour will serve as the basis for this preliminary assessment.

Comparison to the Mixed-Use Project

One important factor in evaluating the readiness of the site and the surrounding roadway network to support this development is to compare the previously approved Mixed Use Project (which received SEQR approval) with the proposed Project.

During the critical weekday evening peak hour, the Project is expected to generate approximately **16-percent few er trips** then the Previous Mixed-Use Proposal. It should be noted that the Project trip generation estimates for the Casino Project do not take any internal and/or pass-by trip credits.

⁷ Note: the proposed development program will include 1,500 slot machines. For the purposes of this traffic evaluation, the total number of slot machines has been increased by 10% (1,650 total) and analyzed to provide some flexibility in the final number of gaming positions.

b customer vehicle trips per hour, from 8 AM - 9 AM

c customer vehicle trips per hour (5 PM - 6 PM on Thursday and Friday; 2 PM - 3 PM on Saturday)

d customer vehicle trips per hour, from 9 PM - 10 PM

Date: June 23, 2014 Project No.: 29266.00

Further, the Site is located adjacent to an active Amtrak train station. It is likely that the Project trip generation estimates presented above could be reduced to account for transit mode choice among casino visitors and/or employees.

Trip Distribution

The directional distribution of site-generated traffic approaching and departing the Site is a function of population densities, existing travel patterns, competing opportunities, and the efficiency of the existing roadway system to carry the new traffic. In the case of projects such as casinos, the trip distribution analysis is typically based on detailed market studies. While VHB did not have access to the specific market studies that may have been prepared for the Project, a potential trip distribution pattern for the regional highway system serving the Site was developed based on the population densities surrounding the facility and known travel routes. This distribution is summarized in Table 3 below and shown graphically in Figure 2.

Table 3: Regional Trip Distribution Summary

Direction From*	Roadway	% of Site Traffic
Northeast	Broadway	20%
East/Southeast	Third Street	5%
East/South East	Columbia Tumpike	5%
West	Route 9 and 20 EB	70%
TOTAL		100 %

^{*} Return trip assumed to be the reverse of the arrival route

As shown in Table 3, the trip distribution estimates suggests that 70-percent of the Project-related traffic will arrive using a portion of the interstate highway system to Route 9 and 20 eastbound. The remaining 30-percent of the Project-related traffic will arrive and depart from the region using Broadway, Third St, or Columbia Turnpike.

Assigning the projected site-generated traffic volumes from Table 2 to the roadway system results in an "order-of-magnitude" level of impact on the nearby study area intersections and roadway links. Table 4 shows the overall weekday and Friday evening peak hour estimates of vehicular traffic on these roadways.

Table 4: Project Related New Traffic by Direction

Direction From*	Roadway	Thursday PM Peak	Friday PM Peak
Northeast	Broadway	155	210
East/Southeast	Third Street	40	55
East/South East	Columbia Tumpike	40	55
West	Route 9 and 20 EB	545	750
TOTAL		780	1,070

^{*} Return trip assumed to be the reverse of the arrival route

Of note, is that the Dunn Memorial Bridge will see approximately 545 new peak hour Thursday evening trips and 750 new Friday evening Project-related trips.

Analysis Results

Using the updated traffic counts as a basis for analysis, VHB prepared updated traffic capacity analyses for the corridor's six study area intersections. The results of that updated analysis are provided below in Table 5:

Table 5 / Intersection Capacity Analysis Summary

				2014 Bui	d Condition	
Location	Movement	v/c¹	Delay ²	LOS ³	Q50⁴	Q95 ⁵
Columbia Street at	EB-LT	0.16	6	Α	8	22
Broadway	EB-TH	0.72	10	В	210	274
	EB-RT	0.02	4	Α	0	5
	WB-LT	0.04	5	Α	1	4
	WB-TH	0.40	7	Α	85	114
	WB-RT	0.05	5	A	1	12
	NB-LT	0.31	26	С	25	65
	NB-TH-RT	0.08	27	С	6	31
	SB-LT	0.46	27	С	37	89
	SB-TH-RT	0.06	26	С	5	26
	Overall	0.67	10	Α		
Third Avenue at	WB-LT-TH	0.60	14	В	54	90
Broadway and Route	WB-RT	0.05	11	В	0	19
9\20 On-Ramp	NB-LT-TH- RT	0.19	6	Α	14	37
	SB-LT-TH	1.03	56	E	~163	#307
	SB-RT	0.75	15	В	87	#247
	Overall	0.88	26	С		
Route 9\20 Off-Ramp	EB-LT	0.93	35	С	216	#411
at Broadway	EB-RT	0.60	15	В	93	177
	NB-TH	0.25	12	В	44	83
	SB-TH	1.05	62	Е	~342	#534
	Overall	0.99	39	D		
Herrick Street at	WB-LT-RT	0.56	24	С	64	109
Broadway	NB-TH-RT	0.72	11	В	161	#437
	SB-LT	0.06	4	Α	1	m9
	SB-TH	0.47	7	Α	122	207
	Overall	0.68	11	В		
John Elvis Blvd at	EB-LT	0.34	24	С	27	59
Broadway	EB-RT	0.18	11	В	0	34
	NB-LT	0.71	20	В	114	#215
	NB-TH	0.21	4	Α	66	55
	SB-TH	0.28	14	В	48	90
	SB-RT	0.05	12	В	0	23
	Overall	0.44	13	В		
Partition Street at	WB-LT-RT	0.47	36	D	37	82
Broadway	NB-TH-RT	0.26	3	Α	38	84
-	SB-LT-TH	0.16	3	Α	22	51
	Overall	0.29	9	Α		

VHB, Inc. using Synchro 7 (Build 773, Rev 8) software. Shaded cells denote LOS E/F conditions. Source:

Note:

volume to capacity ratio average delay in seconds per vehicle

2 3 4 5 # level of service 50th Percentile Queue 95th Percentile Queue

95th Percentile volume exceeds capacity, queue may be longer

Date: June 23, 2014 Project No.: 29266.00

As illustrated in Table 5, the 2014 traffic conditions, with the Casino-related traffic overlaid on it, indicate that all intersections are operating at Level-of-Service D or better and that virtually all movements and approaches throughout the study area are currently operating at acceptable Level-of-Service D or better conditions during the weekday evening peak hour.

SUMMARY AND RECOMMENDATIONS

This technical memorandum has been prepared to identify and support the concept of a Casino development within the City of Rensselaer to be located off of Broadway near the Broadway Viaduct and Amtrak rail yards.

The previously reviewed and approved Mixed-Use development at the site went through a full environmental review as part of the SEQR process and was ultimately approved for development. The currently proposed Casino-project would generate approximately 15-percent less peak hour traffic during the peak hour conditions.

The Proponent of the Casino development should continue to carry forward the same mitigation commitment for the development as was proposed with the prior project so as to address any outstanding mitigation actions required to support the project. Additionally, a few recommendations are suggested to enhance the specific transportation environment associated with the Casino development:

- Reconstruct the site driveway/ access to provide for two entering and exiting lanes. This will require minor widening of the driveway approach to provide the full four lane cross-section and minor modifications to the Broadway northbound approach (which has been contemplated in the design of the intersection).
- Retime/ optimize all the traffic signals along Broadway to adjust to the new traffic patterns associated with the Casino development. Continue to monitor and adjust these timings, as needed, following the initial occupancy of the development to provide for continued coordination and optimal traffic flow.
- Develop shuttle services aimed at transporting patrons between the Project site and the nearby Albany/ Rensselaer Amtrak train station. Consider shuttle services for other transit hubs in the vicinity of the project site.
- Identify off-site parking opportunities for support staff and employees to remotely park and ride to the project site.
- Coordinate with the Capital District Transit Authority (CDTA) to identify potential route changes that could bring a bus line into (or near) the development. Currently, the 114 Neighborhood Route (Madison/ Washington) travels along Broadway near the site.
- Continue to work with the New York Department of Transportation and the City of Rensselaer to enhance and promote the use of the riverfront area as an asset for the site and the surrounding land uses.

With these physical improvements in place, along with the operational changes suggested, the transportation infrastructure supporting the project will be able to safely and efficiently accommodate the resulting traffic impacts of the Casino project.

Date: June 23, 2014 10

Project No.: 29266.00

ATTACHMENTS

- > Trip Distribution Calculations
- > 2014 Traffic Volume Data
 - o Weekday Evening
 - o Friday Evening
- > Synchro Results

Date: June 23, 2014 Project No.: 29266.00

10

ATTACHMENTS

Trip Distribution Calculations

- 2014 Traffic Volume Data
 - Weekday Evening
 - Friday Evening
- > Synchro Results

Trip Distribution

29266.00 :: Rensselaer Casino

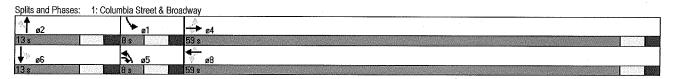
F. 10					Columbia Turnpike	_	umbia Turnpike							
	County	State (miles)	opulation	Factor Factored Population		Route 9 and 20 vla	via Thrid St	Thrid Street via Route 9 and 20 via	Boradway via Rout	Route 9 and 20 vla R	oute 9 and 20 via R	Route 9 and 20 vla	Broadway via	oute 9 and 20 via
Zedaze				-	Route 9 to Route 20	I-90 WB to I-787 SB	WB Street	1-90 EB to 1-787 SB	1-90 EB to Broadway L-87	L87 NB to L787 NB	1-84 EB to I-87 NB to	20 202	l	Route 7 WB (NY) to I-
NORFOLK	5 t	2 5	1,234	5,0	617	40%	40%	%0			20110	1	1-87 5B to 1-90 EB 7	87 SB
NORTH CANAAN	ı		3 345	ļ	854.5	40%		20%						
SALISBURY	Ü		3.741		107.01	40%		20%						
			8,485		4242.5	40%		20%						
			494		247	40%		20%						
			1,737		868.5	40%		202						
	Derkshire M.		1,779	-	889.5	40%		20%						
			1,233	-	616.5	40%		20%						
	l		1,902	1	951	40%		20%						
	ı		1,256	1	633	40%		20%						
	ļ		3,235	ļ	1617.5	40%		20%						
			1,337		668.5	40%		20%						
			1,222	1	611	40%		20%						
	l		77,707	1	851	40%		20%						
			1,671		835,5	40%		20%						
			872	-	436	40%		20%						
			6,756	ļ	3378	40%		20%						
	1		1,225		612,5	40%		20%						
	1		752		376	40%		20%						
	1		1,054		527	40%		2000						
	1		7,104		3552 .	40%		2000						
			21.2		717	40%		2000						
			788	l	168.5	A092		20%						
			706		353	40%		20%						
			2,032		1016	7000		20%						
	İ		2,180		1090	404		70%		_				
			3,091	l	3091	40%		20%						
			5,943		2971 5	40%		20%						
			5005	۱	2642 6	*C*		20%						
			165		360 5	40%		20%						
			121	l	202	40%		20%						
			961		500	40%		20%						
MOUNT WASHINGTON Be			167		83.5	40%		20%						
			228		328	40.4		20%						
			1.509	ļ	75.7	4078		20%						
	l		13,708	l	6854	Ana		20%						
OTIS			1,612	l	806	40%		20%						
			847		423.5	70V		2008						
			44,737		44737	40%		20%						
			648		324	7007		20%						
			1,475		1475	7604		20%						
ROWE			393		196.5	707		20%						
	ļ		915		457.5	707		2029						
			692	l	345	700		20%						
SHEFFIELD			3,257		1628.5	40%		20%						
			1,947		973.5	40%		2000						
			485	١.	242,5	40%		2000						
	1		327		163.5	40%		207						
	-		538		269	40%		2000						
			1,306		653	40%		20%						
			7,754		7754	40%		20%				•		
	1		858	İ	449,5	40%		20%						
	ļ		1,156	ı	578	40%		20%						
Ametordom	ĺ		97,856		97856					/602				-
	1		24,186	1	24186			%05	7605	9792		8000		
	1		1,573	1	786.5 25	% 22%								
Ashland	ļ		3,782	ı	1891							100		
	l		784	0,5	392					1000		%D5	20%	
Austerlitz			4,089		4089					70001				
			777.0	1	1654 25	%52 75%								
Benson			3,770	7 0	9776							7605	2097	
Berlin			1 990	1	96			%05	20%			9/07	SCOC.	
			1,080		1880	15%	20%	15%				1		7005
			33,656		23000					20%		20%		200%
Bleecker	Fulton		533	ł	33000					100%				
			377		188 5			9605	20%					
			5,260		2630						100%			
			973	0.5	486.5			20%	20%					
				ĺ							100%			

29266.00 :: Rensselaer Casino

		:					Columbia Turnpike		Columbia Turnotke							
Clty/Town	County	State	(miles)		Factor Fac	Factored Population	via	Route 9 and 20 vla	- 1.	Thrid Street via	Route 9 and 20 via Boradway via	Route 9 and 20 via	Route 9 and 20 via Route 9 and 20 via	d 20 via Broadway vla		zo vía
			s	2000			Route 9 to Route 20	I-90 WB to I-787 SB	WB	Street	I-90 EB to I-787 SB I-90 EB to Broadway	1-87 NB to 1-787 NB	1-84 EB to 1-87 NB to 1-787 SB to 1-787 SB		Route 7 WB (NY) to I-	NY) to I-
			8 8	889		11946						100%		1	1	
			25	2,692	1	269						100%				
			SO	3,347		1673.	110							100%		
Lexington	Greene		20	805	0.5	405.						10001		20%	50%	
	١		20	3,646	-	187	3 25%	75%	,,,			YOUT				
	ĺ		22	14,765	- 10	1471	25							20%	2005	
			35	5,195		3247	5				%05 %05	.00			200	
	١		25	3776	1	75	0							20%	20%	
			05	3.750	1 5	187							100%			
			50	2,370		118	25%	7507				100%				
			50	18,575		9287.	-									
			20	4,297		2148.	25							20%	20%	
	1		50	3,844		192	2				50%					
	١		2	14,728		736						9				
			25	4,789		478		40%	26007	2000				20%	20%	
	1		25	3,370	1	337	6			0/07		1000+				
New Lebanon	1		25	2,305	1	230	5 25%	75%				TOUS				
			25	8,648	1	864	8					, and a				
Niskayuna	1		25	21,781	1	2178					75%	2000	2002	20%		
	ı		25	12,075		1207	22			2505			3000			
	1		25	2,670		133	3.				20%					20%
			20	3,031	0.5	1515.	2					2				
	1		20	5,087		2543.	25							20%	20%	
Cilve	Uister		22	4,419		2209.	2					1000		20%	20%	
	٨		20	3,240		162	0									
	Fuiton		20	3,646		182	3				50%					
			(25	1,525		152				7656	200	9 -				
			20	2,473		1236.	25%	75%				2				%09
			25	5,735		573										
	-		25	4,530		453	-			805	733+					100%
			20	700	0.5	35						1000				35%
	1		25	2,115	ļ	211	5				25% 25%		2003			
	1		20	1,995	ı	. 666	2						SCOC.	7002	1000	
	1		20	27,901	-1	13950.								20%	20%	
			8	11,319	1	5659.	5 25%	%5.2						20%	20%	
			7	9,392		935	2		20%	40%	40%	3				
Rhineherk			2 5	1,843	1	184						100%				
			200	7,548		377	4 25%	% 75%								
	١		200	2,610	1	130	2						100%			
Rosehoom	1		200	1,715		857.	2				50%	-				
	١		30	711		355.	2						70001			
	ı		25	29,094		2905					50%		2001			
			8	2,502		125						100%		-		
	l		20	2,715	1	1357.	2							2005	2000	
	l		Q	8,530	1	853				20%	15%	-		800	SOC	1
	l		200	5,674	-	283								200	1000	35%
			20	26,586	-	1325								3038	3036	
			30	19,482		974	1					100%		200	SOCI	
	ĺ		ž	264 33	1	19/										1008
	l		25	12 794	-	1270		1000			25% 25%	9	20%			
			20	3.205		1603		1076	45%	45%						
			50	1 763	ı	201							100%			
			50	3,085	1	1542										
	i		20	1,846		92	1					100%				
			20	2,631		1315.	-				200		100%			
	Í		20	2,267	0.5	1133.	15				20%	9				
			20	3,823		1911.	5 25%					TOOL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			25	2,903	1	290		10%	45%	45%						
			25	8,287	1	828										
	İ		25	2,815	1	281	5 25%	75%						20%	20%	
			25	2,027	1	202										
Toutload	١		20	1,148		25							7000			
	1		20	1,310	ı	99	5 25%	75%					TOOLS			
You	1		25	50,129		5012					752%					
			20,00	12,327	1	6163.	5					100%				72%
Watervliet	Albany	NA.	25 25	10.25.01	-	8423								20%	50%	
			7	10,2341		1025						100%		200	200	
														_	_	

Г		7		ı	ı	ı	ı	1	١	1	1%	38	1%	18	*	¥	75	<u>الإ</u>	18	18	1%	1%	%	38	×	%	×	1%	*	8	1 81	1%	ı
	Route 9 and 20 via	Route 7 WB (NY) to I-	787 SB								100;	100:	1001	100:	1005	1001	100:	1001	1001	1000	1000	1000	100;	1005	1000	100;	1005	1005	1000	1000	100%	1001	
ľ		Γ			20%	20%													H					H									l
	Broadway v		1-87 SB to 1-90 EB																														
	d 20 vla				20%	20%																											
	Route 9 an		I-87 SB to I-787 SB																														
	and 20 via	I-84 EB to I-87 NB to							100%	100%																							
	Route 9 :	1-84 EB to	1-781 NB	8			3%	3%												_			-										_
	Route 9 and 20 via Route 9 and 20 via Route 9 and 20 via Broadway via		Han ca to programay 1-8/ NB to 1-787 NB	100%			100	100%			-																						
-	Route		42 1-87 NB		4	-			-		+		$\frac{1}{1}$	1		1	+	1	-	1		1		+	1	+		+	+	1			
	dway via		to proad																														
	via Bora		- [-		-		1	1			1	1			1	+	+	1	+	1	+	1				1				
	Route 9 and 20 via Boradway via	00 COT 44 00 00	0 ED 10 1-7 07																														
				1	1	1					+	+	+	+	+	+				1	$\frac{1}{1}$	1	+	+	1					1	-		
	Thrid Street via	1-90 WB to Third																														-	
Turnpike	- 1									1	1	1	1	1		T	1								Ì		İ		T		T	İ	
Columbia Turnpike	vla	I-90 WB to Rout 20 WB																															
	Route 9 and 20 via	to 1-787 SB																															
	Route 9 a	1-90 WB			-			-		-										1									L				
Columbia Turnpike		Route 9 to Route 20 1-90 WB to 1-787 SB																															
Colum	vla	Route	361	678	1 2	1 2	247	110	230	88.5	887	262	4	364	15.5	539	227	11.5	357	2.5	4.5	795	1.5	412	108	478	450	8.5	938	4.5	212	-	
	Factored Population		3	-	S	ă	6		1	118	,				215		F	1		2								19		38			
	Factored		1	5	5	0.5	1 2	200		157	15	5	0.5	5	5	5	1	2	5	5	5	157	5	2	5	2	5	157	57	5	0.5		
	Factor		19.				5.884	١					İ	728 0.						l	1			824 0.	l			1,357 0.			424 0.	L	
	opulation		3,3	3,356	16.173	1	2	22	1.5	2,317	15,7	1,124			4,391	l ₂	3,5	_		4	109	3,5		"	7	6	6	13	1,8	1	4		
	(miles)								ľ		-				f															-			
-	(mlles)		22	20	SS	S	20	82	25	S	S	ន	S	S	20	S	25	ន	20	55	S	ß	20	S	S	20	25	ß	ន	22	S		
	State		ķ	4	Ä	À.	٨٨	NY	→	П	П	Ŀ	Τ,	7	Ľ	7	T.	7	7	T.	۲	L	П	Т	П	Ŧ	L	L	F	П	E		
	¥1											1		ĺ	_		1		_			-	_	2	_	2	2		2	,			
	County	-	Albany	Washington	Saratoga	Greene	Ulster	Otsego	Schohar								-				L												
	wn		اه	reek		Ē	ock S	ter		TON	GTON		NBURY		ESTER	280	اپ	ORO		4TE	URG	BURY	ایر	8	N	TAND	BORO	GHAM	GTON	l E	ORD		
	Clty/Town		Westerlo	White Creek	Wilton	Windham	Woodst	Worcester	Wright	ARUNGTON	BENNIN	DOVER	GLASTE	HALLFAX	MANCHESTER	MARLBORO	POWNA	READSB	RUPERT	SANDGATE	SEARSB.	SHAFTS	SOMER	STAMFORD	STRATT	SUNDERLAND	WARDSBORO	WHITIN	WILMINGTON	WINHALL	WOODFORD		

29266.00 :: Rensselaer Casino


2014 Synchro Output - Weekday PM Build Condition

	۶	→	7	€	₩.	4	4	†	<i>></i>	1	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	. NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*1	ተተ	7	J.	<u>†</u>	7	*	1		ሻ	1)	
Volume (vph)	51	1458	40	4	805	67	65			97			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	100		265	50		50	50		0	50		0	Silipada istina est neda ilitaria basa e istra
Storage Lanes	1		1	1		1	1		0	1		0	
Taper Length (ft)	25		25	25		25	25		25	25		25	
Right Turn on Red			Yes			Yes			Yes			Yes	
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		434			379			328			596		
Travel Time (s)		9.9			8.6			7.5			13.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Shared Lane Traffic (%)													
Lane Group Flow (vph)	55	1585	43	4	875	73	71	28	0	105	' 20	0	
Turn Type	Perm		pm+ov	Perm		Perm	pm+pt			pm+pt			An Albert As Parlie on the Children
Protected Phases		4	5		8		5	2		· 1	6		
Permitted Phases	4		4	8		8	2		al per filter	6			医克里氏试验检尿 医多种性病 医皮肤
Detector Phase	4	4	5	8	8	8	5	2		1	. 6		
Switch Phase													我们就是我们的 医多种性 医多种性
Minimum Initial (s)	11.0	11.0	3.0	4.0	4.0	4.0	3.0	3.0		3.0	3.0		
Minimum Split (s)	21.0	21.0	8.0	21.0	21.0	21.0	8.0	8.0		8.0	8.0		
Total Split (s)	59.0	59.0	8.0	59.0	59.0	59.0	8.0	13.0	0.0	8.0	13.0	0.0	
Total Split (%)	73.8%	73.8%	10.0%	73.8%	73.8%	73.8%	10.0%	16.3%	0.0%	10.0%	16.3%	0.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	4.0	and the second of the first of the first
Lead/Lag			Lag				Lag	Lead		Lag	Lead		
Lead-Lag Optimize?			Yes				Yes	Yes		Yes	Yes		
Recall Mode	None	None	None	None	None	None	None	Max		None	Max		
v/c Ratio	0.16	0.72	0.04	0.04	0.40	0.07	0.27	0.12		0.41	0.09		
Control Delay	6.3	10.4	0.8	5.2	6.6	1.7	28.3	23.9		31.4	25.7		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	145745	
Total Delay	6.3	10.4	8.0	5.2	6.6	1.7	28.3	23.9		31.4	25.7		
Queue Length 50th (ft)	8	210	0	1	85	1	25	6		37	5		
Queue Length 95th (ft)	22	274	5	4	114	12	65	31		89	26		
Internal Link Dist (ft)		354			299			248			516	1000	
Turn Bay Length (ft)	100		265	50		50	50			50			
Base Capacity (vph)	441	2836	1144	144	2836	1282	260	231		259	229		
Starvation Cap Reductn	0	0	0	0	0	0	. 0	0		0	0		•
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0		
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0		
Reduced v/c Ratio	0.12	0.56	0.04	0.03	0.31	0.06	0.27	0.12		0.41	0.09		

Intersection Summary

Area Type: Other
Cycle Length: 80
Actuated Cycle Length: 66.6
Natural Cycle: 50

Control Type: Semi Act-Uncoord

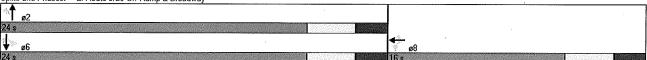
1: Columbia Street & Broadway

	→	→	~	•	-	•	4	†	· /*	<u> </u>	Ţ	4	
Movement	EBL	EBT	EBR	WBL	. WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	^		7		7	ሻ	and the contract of the contra	140/4	ሻ		DIANC MANAGEMENT	
Volume (vph)	51	1458				67	65		12	97	ាវ		
Ideal Flow (vphpl)	1900	1900		1900		1900	1900		1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0		5.0		5.0	5.0		7000	5.0	5.0		
Lane Util. Factor	1.00	0.95		1.00		1.00	1.00	1.00		1.00	1.00		
Frt 18 18 18 18 18 18 18 18 18 18 18 18 18	1.00	1.00		1.00		0.85	1.00			1.00	0.94		
Flt Protected	0.95	1.00		0.95		1.00	0.95	1.00		0.95	1.00		
Satd. Flow (prot)	1770	3539		1770		1583	1770	1733			1751		
Fit Permitted	0.29	1.00	1.00	0.10		1.00	0.74	1.00		0.74	1.00		
Satd. Flow (perm)	549	3539	1583	179		1583	1386	1733		1377	1751		deside a la ferrar para la dedicada
Peak-hour factor, PHF	0.92	0.92	0.92	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	THE STATE OF THE S
Adj. Flow (vph)	55	1585	43	0.92		73	71	15	13	105	12	0.92	
RTOR Reduction (vph)	0	1000	15	0		25	0		0			8	
	55	1585	28	_			-	11		0	7	0	
Lane Group Flow (vph)		1000		4	875	48	71	17	0	105	13	0	A STOCK STATE OF A STATE OF STATE OF A STATE
Tum Type	Perm		pm+ov	Perm		Perm	pm+pt			pm+pt			
Protected Phases		4	5	_	8	100	5	2		1	6		
Permitted Phases	4		4	8		8	2			6			
Actuated Green, G (s)	41.6	41.6	43.8	41.6	41.6	41.6	10.6	8.4		10.6	8.4		
Effective Green, g (s)	41.6	41.6	43.8	41.6	41.6	41.6	10.6	8.4		10.6	8.4		
Actuated g/C Ratio	0.62	0.62	0.65	0.62	0.62	0.62	0.16	0.12		0.10	0.12		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	340	2191	1150	111	2191	980	231	217		230	219		
//s Ratio Prot		c0.45	0.00		0.25		0.01	0.01	my been bee	c0.01	0.01		
r/s Ratio Perm	0.10		0.02	0.02		0.03	0.04			c0.06			
//c Ratio	0.16	0.72	0.02	0.04	0.40	0.05	0.31	0.08		0.46	0.06		
Iniform Delay, d1	5.4	8.8	4.1	5.0	6.5	5.0	25.1	26.0		25.8	25.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		
ncremental Delay, d2	0.2	1.2	0.0	0.1	0.1	0.0	0.8	0.7		1.4	0.5		
Delay (s)	5.6	10.0	4.1	5.1	6.6	5.0	25.9	26.7		27.2	26.4		
evel of Service	Α	В	Α	A	Α	Α	C	С		С	С		
Approach Delay (s)		9.7			6.5			26.1			27.1		
Approach LOS		Α			Α			С			C		
ntersection Summary													
ICM Average Control Delay			10.0	ŀ	ICM Level	of Service	3		А				
ICM Volume to Capacity ratio			0.67	. Section 1		2. 00. 1100	langer.						
Actuated Cycle Length (s)			67.2	Ç	um of lost	time (e)			15.0				
ntersection Capacity Utilization			62.8%		CU Level c				10.0 R				
Analysis Period (min)			15		JO LOTOI C	. 30, 100							
Critical Lane Group			13										
Oracar Lane Oroup													

	٠	-	*	•	4	•	. 4	†	<i>></i>	1	 	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	. NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					41>	7		4			स	7	
Volume (vph)	0	0	0	13	491	67				449			
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	1900	1900		1900			
Storage Length (ft)	0		0	0		125	0		0	0		75	
Storage Lanes	0		0	0		1	0		0	0		1	
Taper Length (ft)	25		25	25		25	25		25	25		25	province and problems of the ending of the control
Right Turn on Red			Yes			Yes			Yes			Yes	
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		280			836			596			618		
Travel Time (s)		6.4			19.0			13.5		Jana Bara	14.0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Shared Lane Traffic (%)													
Lane Group Flow (vph)	0	0	0	0	548	73	0	172	0	0	618	621	
Turn Type				Perm		Perm	Perm			Perm		Perm	
Protected Phases					8			2			6		
Permitted Phases				8		8	2			6	6	6	
Detector Phase				8	8	. 8	2	2		6	6	6	
Switch Phase													
Minimum Initial (s)				4.0	4.0	4.0		4.0		4.0	4.0	4.0	
Minimum Split (s)				21.0	21.0	21.0	16.0	16.0		16.0	16.0	16.0	and the first the seal substantial entire the substantial
Total Split (s)	0.0	0.0	0.0	16.0	16.0	16.0	24.0	24.0	0.0	24.0	24.0	24.0	
Total Split (%)	0.0%	0.0%	0.0%	40.0%	40.0%	40.0%	60.0%	60.0%	0.0%	60.0%	60.0%	60.0%	
Yellow Time (s)				3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	
All-Red Time (s)	100			2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	5.0	
Lead/Lag													
Lead-Lag Optimize?			77.00	*********		1.344.1						1 13.4 4 5	
Recall Mode				None	None	None	Max	Max		Max	Max	Max	
v/c Ratio					0.60	0.16		0.21			1.03	0.77	
Control Delay					15.8	4.9		5.4			63.2	16.6	
Queue Delay					0.0	0.0		0.0			0.0	0.0	
Total Delay Queue Length 50th (ft)					15.8 54	4.9 0		5.4 14			63.2	16.6	
						-					~163	87	
Queue Length 95th (ft) Internal Link Dist (ft)		200			90 756	19		37 516		returnes.	#307	#247	
Turn Bay Length (ft)		200			700	405		510			538	70	
Base Capacity (vph)	u saugsasa.				994	125 497		817			598	75 811	
Starvation Cap Reductn						497							
Spillback Cap Reductin					0	ő		0			0	0	
Storage Cap Reductin					0	0		0			0	0	
Reduced v/c Ratio		Sealand)			0.55	0.15		0.21			1.03	0.77	reaction are relative to a constant
NOGGOOG WO NAME					0.00	0.10		0.21			1.03	0.77	and the second of the second o

Intersection Summary

Area Type: Other
Cycle Length: 40
Actuated Cycle Length: 39.2
Natural Cycle: 60


Control Type: Actuated-Uncoordinated

- Volume exceeds capacity, queue is theoretically infinite.

 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

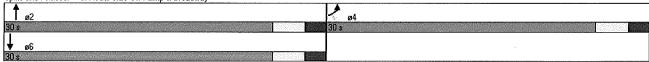
 Queue shown is maximum after two cycles.

Splits and Phases: 2: Route 9/20 On-Ramp & Broadway

	→	-	*	•	-	*	4	†	1	. 🖫	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					41	7		4			4	*ح	
Volume (vph)	0	0	0	13	491	67	19	95	44	449	120	571	
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)					5.0	5.0	y Hymiddin	5.0			5.0	5.0	
Lane Util. Factor					0.95	1.00		1.00			1.00	1.00	
Frt Maria Barrer					1.00	0.85		0.96			1.00	0.85	
Flt Protected					1.00	1.00		0.99			0.96	1.00	
Satd. Flow (prot)					3535	1583		1782			1792	1583	
FIt Permitted					1.00	1.00		0.91			0.66	1.00	
Satd. Flow (perm)					3535	1583		1633			1231	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	0	14	534	73	21	103	48	488	130	621	
RTOR Reduction (vph)	0	0	0	0	0	54	0	25	0	0	0	42	
ane Group Flow (vph)	0	0	0	0	548	19	0	147	0	0	618	579	
Turn Type				Perm		Perm	Perm			Perm		Perm	
Protected Phases					8			2			6		
Permitted Phases				. 8	Ŭ	. 8	2			6	6	6	
Actuated Green, G (s)				and the second and	10.1	10.1	a estaçõe.	19.0		es, estas	19.0	19.0	
Effective Green, g (s)					10.1	10.1		19.0			19.0	19.0	
Actuated g/C Ratio					0.26	0.26		0.49			0.49	0.49	
Clearance Time (s)					5.0	5.0		5.0			5.0	5.0	
/ehicle Extension (s)					3.0	3.0		3.0			3.0	3.0	
ane Grp Cap (vph)					913	409		794		-	598	769	
/s Ratio Prot					310	- 100		134			000	103	
/s Ratio Perm					0.16	0.01		0.09			c0.50	0.37	
/c Ratio	aguiteiri				0.60	0.05		0.09			1.03	0.75	
Iniform Delay, d1					12.7	10.9		5.7			10.1	8.1	
Progression Factor					1.00	1.00		1.00			1.00	1.00	 The following parameters of the fire
ncremental Delay, d2					1.1	0.0		0.5			45.7	6.7	
Pelay (s)					13.8	10.9		6.2			55.7	14.9	
evel of Service					10.0 B	10.5 B		Α			55.7 E	В	
pproach Delay (s)		0.0			13.5	474 P. E.		6.2			35.3		
pproach LOS		0.0 A			13.3 ·			Α.			33.3 D		
		/\			b			Л		640000000000000000000000000000000000000	U		-
ntersection Summary CM Average Control Delay			26.1	ПС	Milovol	of Service			С				
CM Volume to Capacity ratio			0.88	по	W LEVE!	OI SELVICE	De AMONT		U				
ctuated Cycle Length (s)			39.1	C	n of lost	timo (a)			10.0				
			70.5%						10.0				
Itersection Capacity Utilization				ICU	revei o	f Service			C				
nalysis Period (min)			15										

<u></u>	•	4	1	+	4	
Lane Group EBI	_ EBR	NBL	NBT	SBT	SBR	
Lane Configurations			↑	↑		
Volume (vph) 61:			180	761	0	
Ideal Flow (vphpl) 1900			1900	1900	1900	
Right Turn on Red	Yes				Yes	
Link Speed (mph) 30			30	30		
Link Distance (ft) 569			618	247		
Travel Time (s) 12.9			14.0	5.6		
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	
Shared Lane Traffic (%)						
Lane Group Flow (vph) 668	430	0	196	827	0	
Turn Type	Perm					
Protected Phases 4			2	6		
Permitted Phases	4					•
Detector Phase 4	4		2	6		
Switch Phase						
Minimum Initial (s) 4.0	4.0		4.0	4.0		
Minimum Split (s) 21.0	21.0		21.0	21.0		
Total Split (s) 30.0	30.0	0.0	30.0	30.0	0.0	
Total Split (%) 50.0%	50.0%	0.0%	50.0%	50.0%	0.0%	
Yellow Time (s) 3.0			3.0	3.0		
All-Red Time (s) 2.0		4.7	2.0	2.0		
Lost Time Adjust (s) 0.0		0.0	0.0	0.0	0.0	r Sandraf Sandra an Caillean Sandra an Caillean an Caillean an Caillean an Caillean an Caillean an Caillean Ai
Total Lost Time (s) 5.0		4.0	5.0	5.0	4.0	
Lead/Lag		1.0				
Lead-Lag Optimize?						
Recall Mode None	None		Max	Max		
v/c Ratio 0.93			0.25	1.05		
Control Delay 39.3			12.4	66.3		
Queue Delay 0.0	0.0		0.0	162.3		
Total Delay 39.3	15.9		12.4	228.6		
Queue Length 50th (ft) 216	93		44	~342		
Queue Length 95th (ft) #411	177		83	#534		
Internal Link Dist (ft) 489	111		538	167		
Tum Bay Length (ft)			JJ0	107		
Base Capacity (vph) 751	716		790	790		
Starvation Cap Reductn 0	7 10		790	209		
otalianon capitoadani	0		-	209		
Spillback Cap Reductn 0 Storage Cap Reductn 0	0		0	0		ang pang palawas kalawa katan kanala kanala na pang akan manala manala ana kalawa
ototago oup i touadatti	•					and the state of t
Reduced v/c Ratio 0.89	0.60		0.25	1.42		

Intersection Summary Area Type: Cycle Length: 60 Actuated Cycle Length: 59 Other


Natural Cycle: 80

- Control Type: Actuated-Uncoordinated

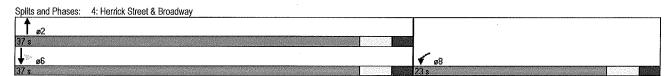
 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.

Splits and Phases: 3: Route 9/20 Off-Ramp & Broadway

	ၨ	*	4	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7		†	↑		
Volume (vph)	615	396	0	180	761	0	
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0		5.0	5.0		
Lane Util. Factor	1.00	1.00		1.00	1.00		
Fri (vibia via Vibia e in 111 i sua	1.00	0.85		1.00	1.00		
Flt Protected	0.95	1.00		1.00	1.00		
Sald. Flow (prot)	1770	1583		1863	1863		
FIt Permitted	0.95	1.00		1.00	1.00		
Satd. Flow (perm)	1770	1583		1863	1863		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	668	430	0	196	827	0	
RTOR Reduction (vph)	0	46	0	0	0	0	
Lane Group Flow (vph)	668	384	0	196	827	0	
Turn Type		Perm					•
Protected Phases	4			2	6		
Permitted Phases	•	4		_	·		
Actuated Green, G (s)	24.0	24.0		25.0	25.0		
Effective Green, g (s)	24.0	24.0		25.0	25.0		
Actuated g/C Ratio	0.41	0.41		0.42	0.42	age of the	
Clearance Time (s)	5.0	5.0		5.0	5.0		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		
ane Grp Cap (vph)	720	644		789	789		
	c0.38	011		0.11	c0.44		
uls Ratio Perm	00.00	0.24		0.11	00.77		
//c Ratio	0.93	0.60		0.25	1.05		
Jniform Delay, d1	16.7	13.7		10.9	17.0		
Progression Factor	1.00	1.00		1.00	1.00		Proceedings of the additional and the first the first the proceeding and the second of the second
ncremental Delay, d2	18.0	1.5		0.8	45.4		
Delay (s)	34.7	15.2		11.7	62.4		the transfer of the control of the project in the control of the control of the control of the control of the c
evel of Service	C	B		В.	E.		
Approach Delay (s)	27.1			11.7	62.4		
Approach LOS	C			B	E		
			118000000000000000000000000000000000000		-	up destabliques es establishes	
ntersection Summary						_	
ICM Average Control Delay			39.4	Н	CM Level	of Service	
ICM Volume to Capacity ratio			0.99				
ctuated Cycle Length (s)			59.0		um of lost		10.0
ntersection Capacity Utilization			82.5%	IC	U Level o	f Service	that and set of proving \$1.00 proprietion and property of the province of register at 12 february.
nalysis Period (min)			15				
Critical Lane Group							

	*	•	†	1	\	1
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		4		ሻ	^
Volume (vph)	177	6	594	173	14	510
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Right Turn on Red	An Visiya	Yes	ad (jil)	Yes	an Pilin	
Link Speed (mph)	30	. 30	30			30
Link Distance (ft)	624		247			340
Travel Time (s)	14.2		5.6			7.7
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	199	0	834	0	15	554
Turn Type					Perm	
Protected Phases	8		2			6
Permitted Phases					6	
Detector Phase	8		2		6	6
Switch Phase	_		_		-	-
Minimum Initial (s)	4.0		4.0		4.0	4.0
Minimum Split (s)	21.0		21.0		21.0	21.0
Total Split (s)	23.0	0.0	37.0	0.0	37.0	37.0
Total Split (%)	38.3%	0.0%	61.7%	0.0%	61.7%	61.7%
Yellow Time (s)	3.0	0.07.0	3.0	0.070	3.0	3.0
All-Red Time (s)	2.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	4.0	5.0	4.0	5.0	5.0
Lead/Lag	5.0	7.0	3.0	7,0	0,0	J.U
Lead-Lag Optimize?						
Recall Mode	None		C-Min		C-Min	C-Min
v/c Ratio	0.57		0.72		0.06	0.47
Control Delay	27.1		13.1		5.5	7.7
Queue Delay	0.0		30.0		0.0	0.2
Total Delay	27.1		43.1		5.5	7.9
Queue Length 50th (ft)	64		161		9.9 1	122
Queue Length 95th (ft)	109		#437		m9	207
Internal Link Dist (ft)	544		#437 167		me	260
Turn Bay Length (ft)	044		10/			200
	533		1162		265	1184
Base Capacity (vph)	533		365		265 0	1184
Starvation Cap Reductn	0				0	
Spillback Cap Reductn	0		0		0	0
Storage Cap Reductn Reduced v/c Ratio	0.37		1.05		0.06	0.52
veduced Mc vallo	0.37		1.05		0.00	U.5Z


Intersection Summary
Area Type:

Cycle Length: 60
Actuated Cycle Length: 60
Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Natural Cycle: 60

Other

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 M Volume for 95th percentile queue is metered by upstream signal.

	√	4	†	~	\	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		^		الر	†	
Volume (vph)	177	6	594	173	14	510	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0		5.0		5.0	5.0	ra es qua colo los delimetros del describir del regimento del colo del medion con los properes de la colo
Lane Util. Factor	1.00		1.00		1.00	1.00	
Frt	1.00		0.97		1.00	1.00	
Flt Protected	0.95		1.00		0.95	1.00	
Satd. Flow (prot)	1769		1806		1770	1863	
Flt Permitted	0.95		1.00		0.22	1.00	
Satd. Flow (perm)	1769		1806		416	1863	4000 managagagagan 1960 meleberah 1960 menangangan 1960 meleberah 1960 meleberah 1960 meleberah 1960 meleberah
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	192	7	646	188	15	554	
RTOR Reduction (vph)	2	0	14	0	0	0	
Lane Group Flow (vph)	197	0	820	0	15	554	
Tum Type					Perm		
Protected Phases	8		2			6	er er eg eggerg stadts fram gittet sitte er er att attreg tilggiftette samtig a ettig tilejsamte er
Permitted Phases	•		15		6	ŭ	
Actuated Green, G (s)	11.9	3.350	38.1		38.1	38.1	
Effective Green, g (s)	11.9		38.1		38.1	38.1	
Actuated g/C Ratio	0.20		0.64		0.64	0.64	er remembeliet for de skip skip om de prikt fra flagt frammen, av pagfar til flyger av av endtre skip er
Clearance Time (s)	5.0		5.0		5.0	5.0	
Vehicle Extension (s)	3.0		3,0		3.0	3.0	તું અને ભારત કરી કરો છે. જે તેના માટે જે અને અને સાથે જે અને માટે છે. જો માટે કરો છે છે છે છે છે છે છે છે છે છ
Lane Grp Cap (vph)	351		1147		264	1183	
v/s Ratio Prot	c0.11		c0.45			0.30	
v/s Ratio Perm					0.04		
v/c Ratio	0.56		0.72		0.06	0.47	
Uniform Delay, d1	21.7		7.3		4.1	5.7	
Progression Factor	1.00		1.00		0.89	0.95	
ncremental Delay, d2	2.0		3.8		0.4	1.3	
Delay (s)	23.7		11.2		4.1	6.7	
evel of Service	. С		В		Α	Α	
Approach Delay (s)	23.7		11.2			6.6	
Approach LOS	C		В			Α	
ntersection Summary							
ICM Average Control Delay	1		11.1	нс	M Level	of Service	В
ICM Volume to Capacity ra			0.68			2, 55, 1,00	
Actuated Cycle Length (s)			60.0	Su	m of lost	time (s)	10.0
ntersection Capacity Utiliza	tion		60.3%			f Service	
Analysis Period (min)			15	100	0,0,0	. 5011100	
: Critical Lane Group							
C Sur Lario Group							

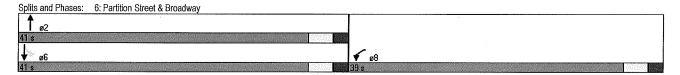
	۶	7	4	†	Ţ	4	
Lane Group E	BL,	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	۴	۲	†	↑	7	
Volume (vph)	75	300	325	268	184	80	
Ideal Flow (vphpl) 19	900	1900	1900	1900	1900	1900	
Right Turn on Red		Yes				Yes	
Link Speed (mph)	30			30	30		
Link Distance (ft)	389			92	603		
Travel Time (s)	8.8			2.1	13.7		
Peak Hour Factor 0	.92	0.92	0.92	0.92	0.92	0.92	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	82	326	353	291	200	87	
Turn Type		custom	Prot			Perm	
Protected Phases	8	8	5	2	6	24/34/23	
Permitted Phases		5				6	
Detector Phase	8	8	5	2	6	6	
Switch Phase .							
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
	B.0	8.0	8.0	8.0	8.0	8.0	
	1.0	21.0	12.0	39.0	27.0	27.0	
Total Split (%) 35.0	1%	35.0%	20.0%	65.0%	45.0%	45.0%	
	3.5	3.5	3.5	3.5	3.5	3.5	
).5	0.5	0.5	0.5	0.5	0.5	
	0.0	0.0	0.0	0.0	0.0	0.0	
	1.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	7.0	7.0	Lead	7.0	Lag	Lag	
_ead-Lag Optimize?			Yes		Yes	Yes	
Recall Mode No	nΔ	None	Max	C-Max	C-Max	C-Max	
	34	0.35	0.71	0.21	0.28	0.13	
1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.7	2.4	23.4	4.7	14.1	4.0	
).0	0.0	0.0	0.0	0.0	0.0	
	3.7	2.4	23.4	4.7	14.1	4.0	and the first of t
	27	2.4	114	66	48	0	
	59	34	m#215	m55	90	23	
	09	34	111#210	12	523	23	
	υ υ			12	020		
um Bay Length (ft)	02	934	497	1361	714	660	
)2 ()	934	497	1301	7 14	000	and the content of th
Starvation Cap Reductn	0	•	-	.0	-	0	e on the state of the state of the second section of the second section of the section of the second section of
Spillback Cap Reductn	0	0		U	0	0	
Storage Cap Reductn Reduced v/c Ratio 0.	16	0.35	0.71	0.21	0.28	0.13	
Reduced v/c Ratio 0.1	10	0.35	0.71	0.21	0.28	0.13	

Intersection Summary

Area Type: Other

Cycle Length: 60 Actuated Cycle Length: 60

Offset: 39 (65%), Referenced to phase 2:NBT and 6:SBT, Start of Green Natural Cycle: 40


Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

	→	*	4	†	1	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7	ሻ	↑	†	7	
Volume (vph)	75	300	325	268		80	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00	1.00		1.00	
Frt delication in the	1.00	0.85	1.00	1.00		0.85	
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00	
Satd. Flow (prot)	1770	1583	1770	1863		1583	
Flt Permitted	0.95	1.00	0.95	1.00		1.00	
Satd. Flow (perm)	1770	1583	1770	1863		1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	82	326	353	291	200	87	
RTOR Reduction (vph)	0	190	0	0	0	54	
Lane Group Flow (vph)	82	136	353	291	200	33	
Turn Type		custom	Prot			Perm	
Protected Phases	8	8	5	2	6		
Permitted Phases		5				6	
Actuated Green, G (s)	8.2	25.0	16.8	43.8	23.0	23.0	and productive programmer production of the advantage of programmer and the
Effective Green, g (s)	8.2	25.0	16.8	43.8	23.0	23.0	
Actuated g/C Ratio	0.14	0.42	0.28	0.73	0.38	0.38	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	242	765	496	1360	714	607	
v/s Ratio Prot	c0.05	0.02	c0.20	0.16	c0.11		
v/s Ratio Perm		0.06				0.02	
v/c Ratio	0.34	0.18	0.71	0.21	0.28	0.05	
Uniform Delay, d1	23.4	11.0	19.4	2.6	12.8	11.7	
Progression Factor	1.00	1.00	0.71	1.50	1.00	1.00	
Incremental Delay, d2	0.8	0.1	5.9	0.2	1.0	0.2	
Delay (s)	24.3	11.1	19.7	4.1	13.8	11.8	and the state of the control of the control of the control of the state of the state of the state of the state The state of the state o
Level of Service	C	В	В	A	В	В	
Approach Delay (s)	13.8			12.7	13.2		
Approach LOS	В			В	. В		
Intersection Summary							
HCM Average Control Delay			13.1	H	ICM Level	of Service	B B
HCM Volume to Capacity ratio			0.44				
Actuated Cycle Length (s)			60.0	S	um of lost	time (s)	12.0
Intersection Capacity Utilizatio	n		41.8%	10	CU Level o	f Service	\mathbb{R}^{2d} is the state of the \mathbf{A}^{d} and \mathbf{A}^{d} are the state of the \mathbf{A}^{d} and \mathbf{A}^{d} and \mathbf{A}^{d}
Analysis Period (min)			15				
c Critical Lane Group							

•		*	†	1	/	↓	
Lane Group W	BL	WBR	NBT	NBR	SBL	SBT	
	ነተ		ĵ.			र्स	
	72	42	245	98	29	164	
	900	1900	1900	1900	1900	1900	
Right Turn on Red		Yes	va idija				
	30		30			30	
	53		603			400	
. , ,	4.8		13.7			9.1	
	92	0.92	0.92	0.92	0.92	0.92	
Shared Lane Traffic (%)		0.02	0.02	0.02	0.02	0.02	
	24	n	373	0	0.0	210	
um Type	47	v	010	U	Perm	210	
rotected Phases	8		2		1 61111	6	
ermitted Phases	U		2.		6	U	
Detector Phase	Ω				6	6	
Switch Phase	Ů		2			. 0	
	1.0		4.0		4.0	4.0	
	1.0		21.0		21.0	21.0	
otal Split (s) 39		0.0	41.0	0.0	41.0	41.0	
otal Split (%) 48.8		0.0%	51.3%	0.0%	51.3%	51.3%	
	3.0	0.076	3.0	0.0%	3.0	3.0	
	2.0).0	0.0	2.0 0.0	0.0	2.0 0.0	2.0	
, , ,	i.0	4.0	5.0	4.0	5.0	5.0	
	1.0	4.0	5.0	4.0	5.0	5.0	
ead/Lag ead-Lag Optimize?							
			OH		00 UI-	O Min	
			C-Min		C-Min	C-Min	
c Ratio 0.5			0.26			0.15	
ontrol Delay 28			3.4			3.3	
	.0		0.0			0.0	
otal Delay 28			3.4			3.3	
	37		38			22	
	32		84			51	
ternal Link Dist (ft) 57	/3		523			320	Tarang salah kerangan bermang salah bermanyan bermanya kerang bermanan kerang salah bermanan bermanan bermanan
um Bay Length (ft)							
ase Capacity (vph) 75			1434			1368	and the state of the control of the control of the control of the control of the control of the control of the
in renen cap riouden	0		0			0	
oillback Cap Reductn	Ď.		0			0	
anage cap madadin	0		0			0	
educed v/c Ratio 0.1	б		0.26			0.15	•
tersection Summary							
rea Type: Other							
ycle Length: 80							
ctuated Cycle Length: 80							
ffset: 0 (0%), Referenced to phase 2	:NBT	and 6:S	BTL, Sta	rt of Gree	n distribution		
atural Cycle: 45							
ontrol Type: Actuated-Coordinated		STATE OF					

	<	4	†	<i>></i>	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		î.			4	
Volume (vph)	72	42	245		29	164	
Ideal Flow (vphpl)	1900	1900	1900		1900	1900	•
Total Lost time (s)	5.0		5.0			5.0	
Lane Util. Factor	1.00		1.00			1.00	
Frt	0.95		0.96			1.00	
Flt Protected	0.97		1.00			0.99	
Satd. Flow (prot)	1716		1791			1849	
FIt Permitted	0.97		1.00			0.92	
Satd. Flow (perm)	1716	30 555405	1791	HALL KARA		1716	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	78	46	266	107	32	178	
RTOR Reduction (vph)	41	0	8	0	0	. 0	
Lane Group Flow (vph)	83	0	365	0	0	210	ing dia ny faritr'i mandritry ny firantan'i Natana ao amin'ny faritr'i Nord-Aranderica.
Tum Type					Perm		
Protected Phases	8		2			6	
Permitted Phases		*			6		
Actuated Green, G (s)	8.2		61.8			61.8	
Effective Green, g (s)	8.2		61.8			61.8	
Actuated g/C Ratio	0.10		0.77			0.77	
Clearance Time (s)	5.0		5.0			5.0	
/ehicle Extension (s)	3.0	45.44	3.0	e se se se se se se se se se se se se se	A Property	3.0	
_ane Grp Cap (vph)	176		1384			1326	
/s Ratio Prot	c0.05	•	c0.20				
/s Ratio Perm						0.12	
/c Ratio	0.47		0.26			0.16	
Jniform Delay, d1	33.9		2.6			2.4	
Progression Factor	1.00		1.00			1.00	
ncremental Delay, d2	2.0		0.5			0.3	
Delay (s)	35.8		3.1			2.6	e l'infrite data et le trabification et déclaration de la company de la company de la company de la company de
evel of Service	D		A			Α	
pproach Delay (s)	35.8		3.1			2.6	
pproach LOS	D		Α			Α	
ntersection Summary							
ICM Average Control Delay	1		8.7	HC	M Level	of Service	A
ICM Volume to Capacity ra			0.29	44.54			લા પ્રાથમિક કરવા કુલિયા મુક્ત કુલિયા છે. તેમને તેમને તેમને પ્રાપ્ય કરે તેમને જે તો કરતો છે. પ્રાપ્યુપિક કુનિયા પ્રાપ્ય
ctuated Cycle Length (s)			80.0	Su	m of lost	time (s)	10.0
ntersection Capacity Utilizal	ion		48.2%		J Level of		alitaria de la compania de la compania de la compania de la compania de la compania de la compania de la compa
nalysis Period (min)			15	,,,			
Critical Lane Group							entral control of the

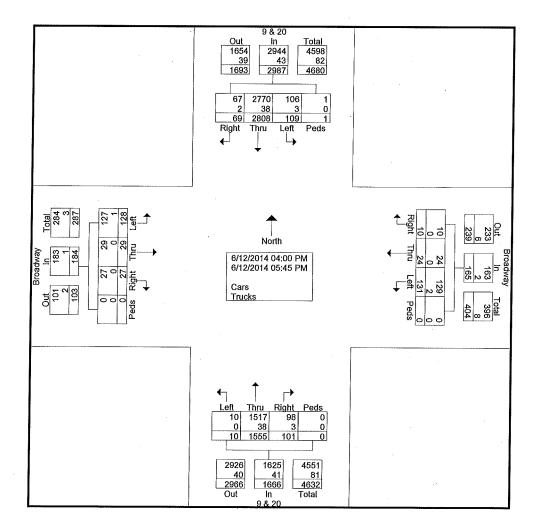
2014 Traffic Counts (weekday evening)

Tri-State Traffic Data, Inc. 610 466-1469

TSTData.com

Location: Rensselaer, New York Intersection: Braodway @ 9&20 Date Thursday, June 12, 2014

Counter: MioVision


File Name: Broadway 1 Weekday Final

Site Code : 0001

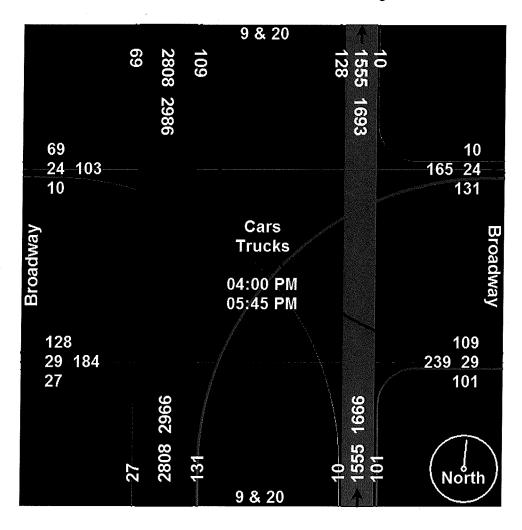
Start Date : 6/12/2014

Page No : 1

								Gı	roups F	Printed-	Cars -	Trucks	3								
			9 & 2	0			E	Broadw	/ay				9 & 20)			Е	Broadw	av]
		S	outhbo	und			, V	lestbou	und			No	orthbo	und			E	astbou	ınd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	int. To
04:00 PM	12	337	14	0	363	1	3	20	0	24	16	189	1	0	206	2	0	11	0	13	60
04:15 PM	7	386	11	0	404	2	3	17	0	22	16	204	1	0	221	1	7	17	ō	25	67
04:30 PM	6	366	16	0	388	2	4	19	0	25	11	217	Ó	Ō	228	6	4	21	Õ	31	67
04:45 PM	15	369	10	0	394	2	1	21	0	24	4	195	2	Ō	201	3	3	16	Ö	22	64
Total	40	1458	51	0	1549	7	11	77	0	95	47	805	4	0	856	12	14	65	0	91	259
05:00 PM	12	413	17	0	442	1	5	19	0	25	17	204	0	0	221	3	7	19	0	29	7′
05:15 PM	4	398	18	1	421	1	1	10	0	12	18	190	4	0	212	3	2	19	0	24	66
05:30 PM	6	286	13	0	305	1	3	9	. 0	13	8	181	2	0	191	4	3	14	0	21	53
05:45 PM	7	_253	10	0	270	0	4	16	0	20	11	175	0	0	186	5	3	11	0	19	49
Total	29	1350	58	1	1438	3	13	54	0	70	54	750	6	0	810	15	15	63	0	93	241
Grand Total	69	2808	109	1	2987	10	24	131	0	165	101	1555	10	0	1666	27	29	400	0	404	500
Approh %	2.3	94	3.6	Ó	2907	6.1	14.5	79.4	0	105	6.1			_	1000			128	0	184	500
Total %	1.4	56.1	2.2	0	59.7	0.1	0.5	2.6	0	2.0	0.1	93.3	0.6	0	00.0	14.7	15.8	69.6	0		
Cars	67	2770	106	1	2944	10	24	129	0	3.3	98	31.1	0.2	0	33.3	0.5	0.6	2.6	0_	3.7	404
% Cars	97.1	98.6	97.2	100	98.6	100	100			163		1517	10	0	1625	27	29	127	0	183	491
Trucks	2	38	37.2	0	43	100	100	98.5	0	98.8	97	97.6	100	0	97.5	100	100	99.2	0	99.5	98.
% Trucks	2.9	1.4	2.8	-		0	U	2	0	2	3	38	0	0	41	0	0	1	0	1	8
70 TIUCKS	2.9	1.4	2.0	0	1.4	0	0	1.5	0	1.2	3	2.4	0.	0	2.5	0	0	0.8	0	0.5	1.

Tri-State Traffic Data, Inc.

610 466-1469 TSTData.com


Location: Rensselaer, New York Intersection: Braodway @ 9&20 Date Thursday, June 12, 2014

Counter: MioVision

File Name: Broadway 1 Weekday Final

Site Code : 0001 Start Date : 6/12/2014

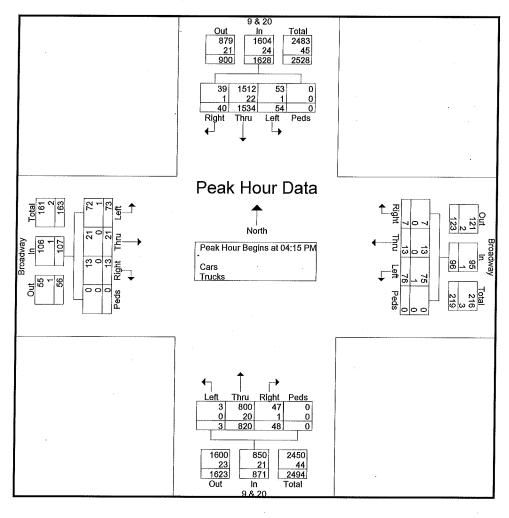
Page No : 2

Tri-State Traffic Data, Inc. 610 466-1469

TSTData.com

Location: Rensselaer, New York Intersection: Braodway @ 9&20 Date Thursday, June 12, 2014

Counter: MioVision


File Name: Broadway 1 Weekday Final

Site Code: 0001

Start Date : 6/12/2014

Page No : 3

		So	9 & 20 outhbo	•				Broadw estbol				N	9 & 2	-				Broadw astbou	-		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right		Left	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From (04:00 F	PM to 0	5:45 PM	1 - Peal	k 1 of 1														
Peak Hour for	r Entire	Inters	ection	Begins	at 04:1	5 PM															
04:15 PM	7	386	11	0	404	2	3	17	0	22	16	204	1	0	221	1	7	17	0	25	672
04:30 PM	6	366	16	0	388	2	4	19	0	25	11	217	0	0	228	6	4	21	0	31	672
04:45 PM	15	369	10	0	394	2	1	21	0	24	4	195	2	0	201	3	3	16	0	22	641
05:00 PM	12	413	17	0	442	1	5	19	0	25	17	204	0	0	221	3	7	19	0	29	717
Total Volume	40	1534	54	0	1628	7	13	76	0	96	48	820	3	0	871	13	21	73	0	107	2702
% App. Total	2.5	94.2	3.3	0		7.3	13.5	79.2	0		5.5	94.1	0.3	0		12.1	19.6	68.2	0		
PHF	.667	.929	.794	.000	.921	.875	.650	.905	.000	.960	.706	.945	.375	.000	.955	.542	.750	.869	.000	.863	.942
Cars	39	1512																			
% Cars	97.5	98.6	98.1	0	98.5	100	100	98.7	0	99.0	97.9	97.6	100	0	97.6	100	100	98.6	O.	99.1	98.3
Trucks	1	22	1	0	24	0	0	1	0	1	1	20	0	0	21	0	0	1	0	1	47
% Trucks	2.5	1.4	1.9	0	1.5	0	0	1.3	0	1.0	2.1	2.4	0	0	2.4	0	0	1.4	0	0.9	1.7

Tri-State Traffic Data, Inc. 610 466-1469

TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ 3rd Avenue Date: Thursday, June 12, 2014 Counter: MioVision

File Name: Broadway 2 Weekday

Site Code : 0002

Start Date : 6/12/2014

Page No : 1

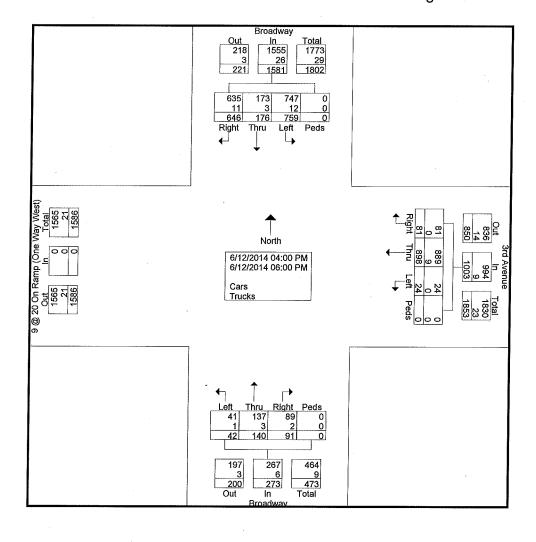
Groups Printed- Cars - Trucks

				Broadwa outhbou	•				rd Aven lestbour	ue							
	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	04:00 PM	132	26	60	0	218	13	146	2	0	161	10	13	10	0	33	412
	04:15 PM	63	25	96	0	184	14	109	4	0	127	5	23	4	0	32	343
	04:30 PM	88	25	113	0	226	9	133	5	0	147	15	21	5	0	41	414
	04:45 PM	54_	26	99	0	179	8	104	1	0	113	6	9	3	. 0	18	310
	Total	337	102	368	0	807	44	492	12	0	548	36	66	22	0	124	1479
											•						1
	05:00 PM	106	24	121	0	251	16	145	3	0	164	18	22	7	0	47	462
	05:15 PM	55	16	114	0	185	6	101	3	0	110	16	18	6	0	40	335
	05:30 PM	53	13	91	0	157	7	81	3	0	91	14	17	2	0	33	281
	05:45 PM	94	20	65	0_	179	8	79	3	0	90	7	17	5	0	29	298
	Total	308	73	391	0	772	37	406	12	0	455	55	74	20	0	149	1376
	00.00 DM				•	- 1		_			- 1					. 1	
	06:00 PM	1	1-0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
	Grand Total	646	176	759	0	1581	81	898	24	0	1003	91	140	42	0	273	2857
	Apprch %	40.9	11.1	48	0		8.1	89.5	2.4	0		33.3	51.3	15.4	0		
-	Total %	22.6	6.2	26.6	0	55.3	2.8	31.4	0.8	0	35.1	3.2	4.9	1.5	. 0	9.6	
	Cars	635	173	747	0	1555	81	889	24	0	994	89	137	41	0	267	2816
_	% Cars	98.3	98.3	98.4	0	98.4	100_	99	100	0	99.1	97.8	97.9	97.6	0	97.8	98.6
	Trucks	11	3	12	0	26	0	9	0	0	9	2	3	1	0	6	41
	% Trucks	1.7	1.7	1.6	0	1.6	0	1	0	0	0.9	2.2	2.1	2.4	0	2.2	1.4

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ 3rd Avenue


Date: Thursday, June 12, 2014

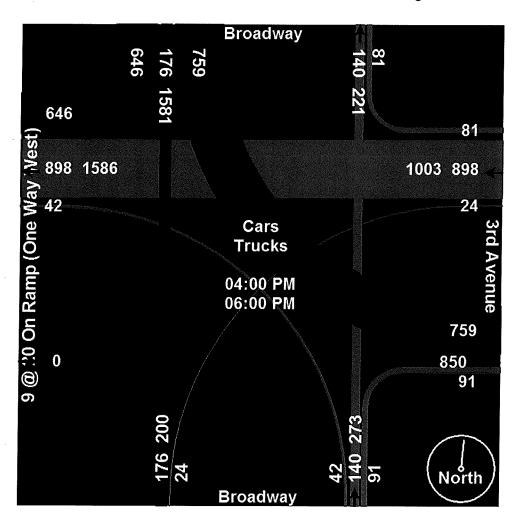
Counter: MioVision

File Name: Broadway 2 Weekday

Site Code: 0002

Start Date : 6/12/2014

610 466-1469 TSTData.com


Location: Rensselaer, New York Intersection: Broadway @ 3rd Avenue

Date: Thursday, June 12, 2014

Counter: MioVision

File Name: Broadway 2 Weekday

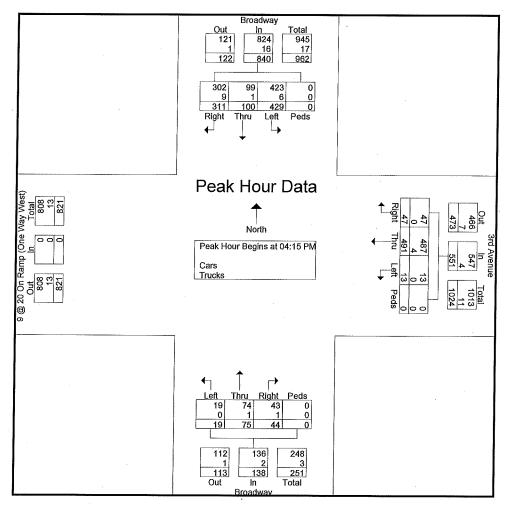
Site Code : 0002 Start Date : 6/12/2014

TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ 3rd Avenue

Date: Thursday, June 12, 2014


Counter: MioVision

File Name: Broadway 2 Weekday

Site Code : 0002

Start Date : 6/12/2014

			Broadwa outhbou	,				ord Aven Vestbou					Broadwa Iorthbou	,		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys																· · · · · · · · · · · · · · · · · · ·
Peak Hour for En	tire Inters	section B	egins at	04:15 P	Μ.											
04:15 PM	63	25	96	0	184	14	109	4	0	127	5	23	4	0	32	343
04:30 PM	88	25	113	. 0	226	9	133	5	0	147	15	21	5	0	41	414
04:45 PM	54	26	99	0	179	8	104	1	0	113	6	9	3	0	18	310
05:00 PM	106	24	121	0	251	16	145	3	0	164	18	22	7	0	47	462
Total Volume	311	100	429	0	840	47	491	13	0	551	44	75	19	0	138	1529
% App. Total	37	11.9	51.1	0_		8.5	89.1	2.4	0		31.9	54.3	13.8	0		
PHF	.733	.962	.886	.000	.837	.734	.847	.650	.000	.840	.611	.815	.679	.000	.734	.827
Cars	302	99	423	0	824	47	487	13	0	547	43	74	19	0	136	1507
% Cars	97.1	99.0	98.6	0	98.1	100	99.2	100	0	99.3	97.7	98.7	100	0	98.6	98.6
Trucks	9	1	6	0	16	0	4	0	0	4	1	1	. 0	. 0	2	22
% Trucks	2.9	1.0	1.4	0	1.9	0	0.8	0	0	0.7	2.3	1.3	0	0	1.4	1.4

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway/9&20 Off Ramp

767

99.5

0

0

0

0

0

0

Date: Thursday, June 12, 2014

Counter: BK

Cars

% Cars

Trucks

% Trucks

File Name: Broadway 3 Weekday

2488

99.1

22

0.9

Site Code: 0003

Start Date : 6/12/2014

Page No : 1

	T					0,00			s - Tiuci		r					ī
		E	3roadwa	ay				Broadwa	ay			- 9 &	20 Off F	₹amp		
		S	outhbou	ınd			N	lorthbou	nd				Eastbou	nd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	136	0	0	136	0	35	0.	0	35	65	0	66	0	131	302
04:15 PM	0	82	0	0	82	0	37	0	0	37	109	0	84	0	193	312
04:30 PM	0	102	0	0	102	0	41	0	0	41	118	0	97	0	215	358
04:45 PM	0	78	0	0	78	0	27	0	0	27	104	0	84	0	188	293
Total	0	398	0	0	398	. 0	140	0	0	140	396	0	331	0	727	1265
05:00 PM	0	131	0	0	131	0	47	0	0	47	139	0	83	0	222	400
05:15 PM	0	73	0	0	73	0	31	0	0	31	172	0	90	0	262	366
05:30 PM	0	52	0	0	52	0	28	0	. 0	28	- 98	0	54	0	152	232
05:45 PM	0	117	0	0	117	0	28	. 0	0	28	65	0	37	0	102	247
Total	0	373	0	0	373	0	134	0	0	134	474	0	264	0	738	1245
Grand Total	0	771	0	0	771	0	274	0	0	274	870	0	595	0	1465	2510
Apprch %	0	100	0	0		0	100	0	0		59.4	0	40.6	0		
Total %	0	30.7	0	0	30.7	0	10.9	0	0	10.9	34.7	0	23.7	0	58.4	

265

96.7

9

0

0

870

100

0

0

0

0

586

98.5

9

0

0

0

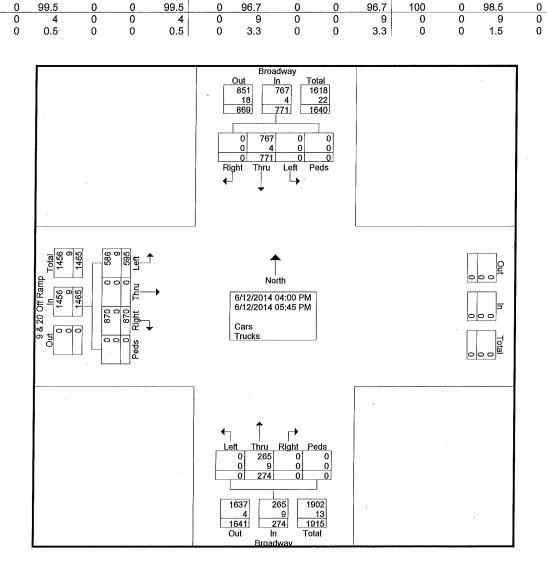
1456

99.4

9

0.6

96.7


9

0

767

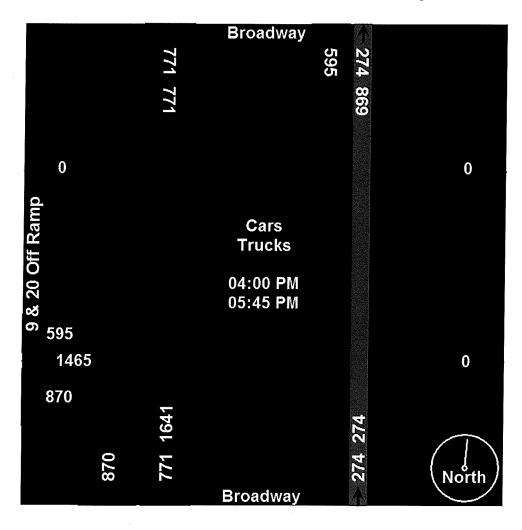
99.5

Groups Printed- Cars - Trucks

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway/9&20 Off Ramp


Date: Thursday, June 12, 2014

Counter: BK

File Name: Broadway 3 Weekday

Site Code : 0003

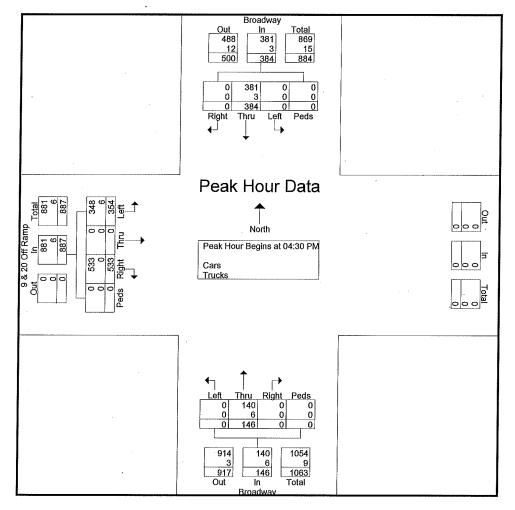
Start Date : 6/12/2014

TSTData.com

Location: Rensselaer, New York

Intersection: Broadway/9&20 Off Ramp

Date: Thursday, June 12, 2014


Counter: BK

File Name: Broadway 3 Weekday

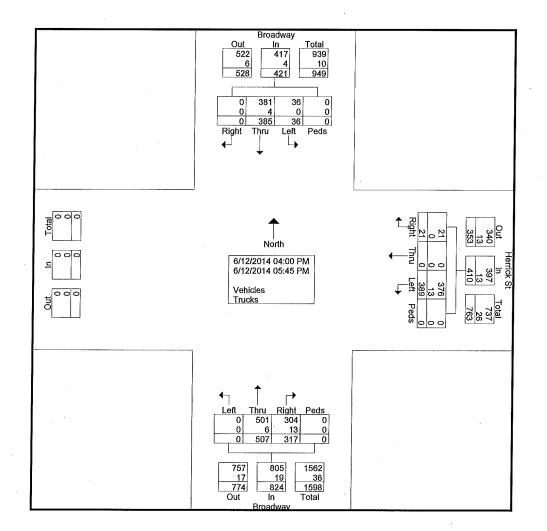
Site Code : 0003

Start Date : 6/12/2014

			Broadwa outhbou					Broadwa Iorthbou	,				20 Off F Eastbour			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	sis From	04:00 PN	I to 05:4	5 PM -	Peak 1 of 1						-	•				
Peak Hour for En	tire Inters	section B	egins at	04:30 P	M .											
04:30 PM	0	102	0	0	102	. 0	41	0	0	41	118	0	97	0	215	358
04:45 PM	0	78	0	0	78	0	27	0	0	27	104	0	84	0	188	293
05:00 PM	0	131	0	0	131	0	47	0	0	47	139	0	83	0	222	400
05:15 PM	0	73	0	0	73	0	31	0	. 0	31	172	0	90	0	262	366
Total Volume	0	384	0	0	384	· O	146	0	0	146	533	0	354	0	887	1417
% App. Total	0	100	0	. 0		0	100	0	0		60.1	0	39.9	0		
PHF	.000	733	.000	.000	.733	.000	.777	.000	.000	.777	.775	.000	.912	.000	.846	.886
Cars	0	381	0	0	381	0	140	0	0	140	533	0	348	0	881	1402
% Cars	. 0	99.2	0	0	99.2	0	95.9	0	0	95.9	100	0	98.3	0	99.3	98.9
Trucks	0	3	0	0	3	0	6	0	0	6	0	0	6	0	6	15
% Trucks	0	8.0	0	0	0.8	0	4.1	0	0	4.1	0	0	1.7	0	0.7	1.1

TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Herrick St Date: Thursday, June 12th, 2014

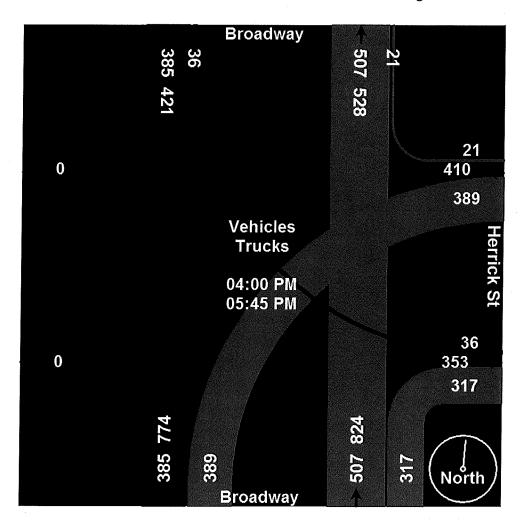

Counter: Bill S

File Name: Broadway 4 Weekday

Site Code: 0004

Start Date : 6/12/2014

,						Group	s Printed	l- Vehicl	es - Tru	cks						
		E	Broadwa	ay				Herrick S	St ·			İ	Broadwa	ay .]
		Ş	<u>outhbou</u>	ınd			Ų	Vestbou	nd	,		N	lorthbou	nd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Tota
04:00 PM	0	51	3	0	54	1	0	77	0	78	41	57	0	0	98	230
04:15 PM	0	40	3	0	43	2	0	34	0	36	46	67	0	0	113	192
04:30 PM	0	76	6	0	82	0	0	28	0	28	40	91	0	0	131	241
04:45 PM	0	43	2	0	45	3	0	38	0	41	46	54	0	0	100	186
Total	0	210	14	0	224	6	0	177	0	183	173	269	0	0	442	849
05:00 PM	0	51	9	0	60	4	0	84	0	88	41	71	0	0	112	260
05:15 PM	0	45	7	0	52	6	0	34	0	40	50	74	0	0	124	216
05:30 PM	0	32	2	0	34	2	0	16	0	18	29	53	0	0	82	134
05:45 PM	0	47	4	0	51	-3	0	78	0	81	24	40	0	0	64	196
Total	.0	175	22	0	197	15	0	212	0	227	144	238	0	0	382	806
Grand Total	0	385	36	0	421	21	0	389	0	410	317	507	0	0	824	1655
Apprch %	0	91.4	8.6	0		5.1	0	94.9	0		38.5	61.5	0	0		
Total %	0	23.3	2.2	0	25.4	1.3	0	23.5	0	24.8	19.2	30.6	0	0	49.8	
Vehicles	0	381	36	0	417	21	0	376	0	397	304	501	0	0	805	1619
% Vehicles	0	99	100	0	99	100	0	96.7	0	96.8	95.9	98.8	0	0	97.7	97.8
Trucks	0	4	0	0	4	0	0	13	0	13	13	6	0	0	19	36
% Trucks	Ω	1	0	0	1	Λ	Λ	3.3	Λ	3.2	11	12	Λ	٥	23	. 22


610 466-1469 TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Herrick St Date: Thursday, June 12th, 2014

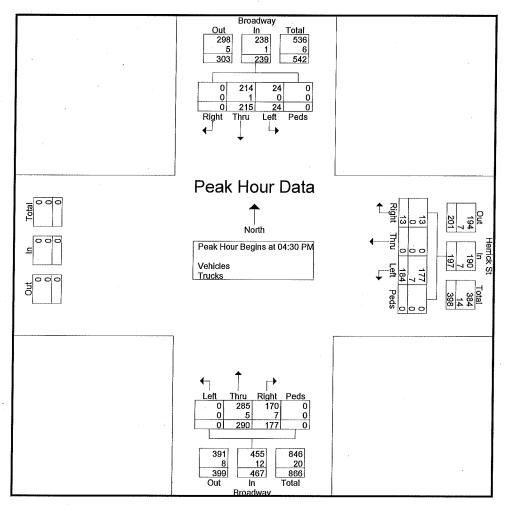
Counter: Bill S

File Name: Broadway 4 Weekday

Site Code : 0004 Start Date : 6/12/2014

610 466-1469 TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Herrick St Date: Thursday, June 12th, 2014


Counter: Bill S

File Name: Broadway 4 Weekday

Site Code: 0004

Start Date : 6/12/2014

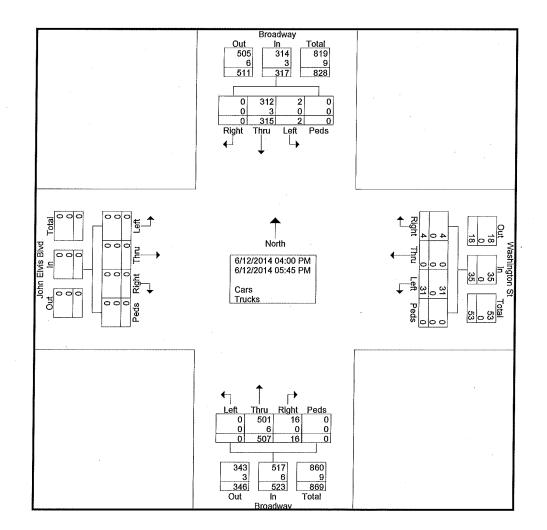
			3roadwa outhbou	-				Herrick S Vestboui	- •				Broadwa Iorthbou			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	sis From	04:00 PN	A to 05:4	5 PM - I	Peak 1 of 1							•				
Peak Hour for En	tire Inters	section B	egins at	04:30 P	M											
04:30 PM	0	76	6	0	82	0	0	28	0	28	40	91	0	0	131	241
04:45 PM	0	43	2	0	45	3	0	38	0	41	46	54	0	0	100	186
05:00 PM	0	51	9	0	60	4	0	84	0	88	41	71	0	0	112	260
05:15 PM	0	45	7	0	52	6	0	34	0	40	50	74	0	0	124	216
Total Volume	0	215	24	0	239	13	0	184	0	197	177	290	0	0	467	903
% App. Total	0	90	10	0		6.6	0	93.4	0		37.9	62.1	0	0		
PHF	.000	.707	.667	.000	.729	.542	.000	.548	.000	.560	.885	.797	.000	.000	.891	.868
Vehicles	0	214	24	0	238	13	0	177	0	190	170	285	0	0	455	883
% Vehicles	0	99.5	100°	0	99.6	100	0	96.2	0	96.4	96.0	98.3	0	0	97.4	97.8
Trucks	0	1	. 0	0	1	0	0	. 7	0	7	7	5	0	0	12	20
% Trucks	0	0.5	0	0	0.4	0	0	3.8	0	3.6	4.0	1.7	0	0	2.6	2.2

610 466-1469 TSTData.com

Location: Rensselaer New York

Intersection: Broadway @ Washington St

Date: Thursday, June 12, 2014


Counter: MB

File Name: Broadway 5 Weekday

Site Code: 0005

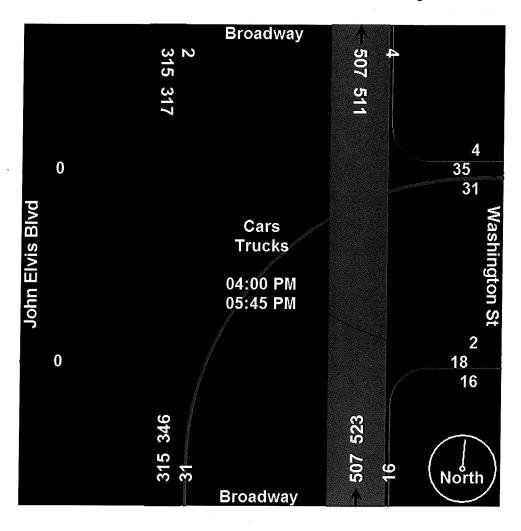
Start Date : 6/12/2014

								G	roups I	Printed-	Cars -	Trucks	S								
		E	Broadw	/ay			Wa	shingt					Broadw	/ay			Joh	n Elvis	Blvd		
		Sc	outhbo	und				estboi				N	orthbo	und			Е	astbou	ınd		i
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	40	0	0	40	1	0	7	0	8	2	57	0	0	59	0	0	0	0	0	107
04:15 PM	0	35	0	0	35	0	. 0	6	0	6	3	65	0	0	68	0	0	0	0	0	109
04:30 PM	0	70	1	0	71	- 1	0	5	0	6	3	86	0	0	89	0	0	0	0	0	166
04:45 PM	0	37	1	. 0	38	1	0	2	0	3	1	57	0	0	58	. 0	0	0	0	0	99
Total	0	182	2	0	184	3	0	20	0	23	9	265	0	0	274	0	0	0	0	0	481
05:00 PM	0	39	0	0	39	.1	0	6	0	7	2	75	0	0	77	0	0	0	Ó	0	123
05:15 PM	0	34	0	0	34	0	0	3	0	3	2	71	0	0	73	0	0	0	0	0	110
05:30 PM	0	25	0	0	25	0	0	1	0	1	2	54	0	0	56	0	0	0	0	0	82
05:45 PM	0	35	. 0	0	35	0	0	1_	0	1	1_	42	0	0	43	0	0	0	0	0	79
Total	0	133	0	0	133	1	0	11	0	12	7	242	0	0	249	0	0	0	0	0	394
1																					
Grand Total	0	315	2	0	317	4	0	31	0	35	16	507	0	0	523	0	0	0	0	0	875
Apprch %	0	99.4	0.6	0		11.4	0	88.6	0	İ	3.1	96.9	0	0		. 0	0	0	0		
Total %	0	36	0.2	0	36.2	0.5	0	3.5	0	4	1.8	57.9	0	0	59.8	0	0	0	0	0	
Cars	0	312	2	0	314	4	0	31	0	35	16	501	0	0	517	0	0	0	0	0	866
% Cars	0	99	100	0	99.1	100	0_	100	0	100	100	98.8	0	. 0	98.9	0	0	0	0	0	99
Trucks	0	3	0	0	3	0	0	0	0	0	0	6	0	0	- 6	0	0	0	0	0	9
% Trucks	0	1	0	0	0,9	0	0	0	0	. 0	0	1.2	0	0	1.1	0	0	0	0	0	1

610 466-1469 TSTData.com

Location: Rensselaer New York

Intersection: Broadway @ Washington St


Date: Thursday, June 12, 2014

Counter: MB

File Name: Broadway 5 Weekday

Site Code : 0005

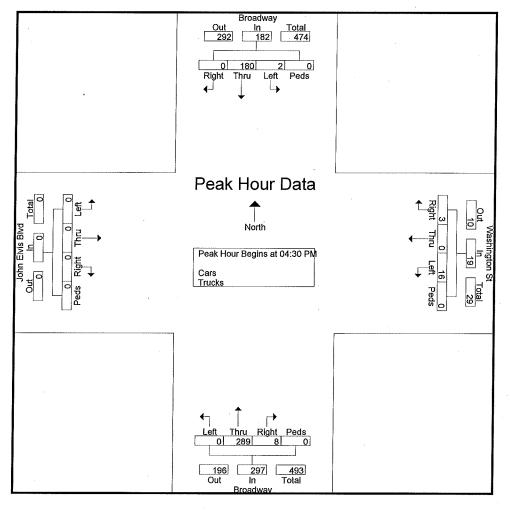
Start Date : 6/12/2014

610 466-1469 TSTData.com

Location: Rensselaer New York

Intersection: Broadway @ Washington St

Date: Thursday, June 12, 2014


Counter: MB

File Name: Broadway 5 Weekday

Site Code : 0005

Start Date : 6/12/2014

			roadw					shingt					roadw				Joh	n Elvis	Blvd]
		So	uthbo	und			W	<u>/estboι</u>	und .			No	orthbo	und		i	E	astbou	ınd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From 0	4:00 F	M to 0	5:45 PN	1 - Peal	k 1 of 1							,,,,,,,,,,,							
Peak Hour for	r Entire	Interse	ection	Begins	at 04:3	0 PM															
04:30 PM	0	70	1	0	71	1	0	5	0	6	3	86	0	0	89	0	0	0	0	0	166
04:45 PM	0	37	1	0	38	1	0	2	0	3	1	57	0	0	58	0	0	Ó	Ō	Ō	99
05:00 PM	0	39	0	, 0	39	1	0	6	0	7	2	75	0	0	77	0	0	0	0	0	123
05:15 PM	0	34	0	´ 0	34	0	0	3	0	3	2	71	. 0	0	73	0	0	0	0	0	110
Total Volume	0	180	2	0	182	3	0	16	0	19	8	289	0	0	297	0	0	0	0	0	498
% App. Total	0	98.9	1.1	0		15.8	0	84.2	0		2.7	97.3	0	0		0	0	0	0	-	
PHF	.000	.643	.500	.000	.641	.750	.000	.667	.000	.679	.667	.840	.000	.000	.834	.000	.000	.000	.000	.000	.750

TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ Partition St

Date: Thursday, June 12, 2014

Counter: Miovision

File Name: Broadway 6 Weekday

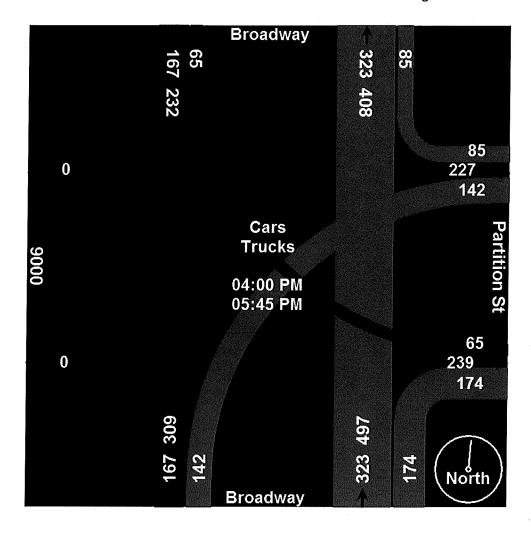
Site Code: 0006

Start Date : 6/12/2014

						Grou	ps Print	ed- Cars	s - Truck	(S						
			Broadwa				F	Partition	St			E	Broadwa	ıy		
		Ş	outhbou	ınd			V	<u>Vestbou</u>	nd			N-	orthbou	nd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	15	10	0	25	16	0	17	0	33	21	33	0	0	54	112
04:15 PM	0	23	2	0	25	11	0	13	0	24	25	40	Ō	ō	65	114
04:30 PM	0	29	9	0	38	10	0	25	0	35	32	58	Ō	ō	90	163
04:45 PM	0	17	8	0	25	5	0	17	0	22	20	39	0	Ō	59	106
Total	0	84	29	0	113	42	0	72	0	114	98	170	0	0	268	495
05:00 PM	0	21	12	0	33	12	0	13	0	25	19	46	0	0	65	123
05:15 PM	0	17	4	0	21	13	Ō	20	ō	33	21	55	ő	ő	76	130
05:30 PM	0	22	9	0	31	12	0	17	Ō	29	23	24	Ô	Ô	47	107
05:45 PM	0	23	11	0	34	6	0	20	Ō	26	13	28	Õ	ő	41	101
Total	0	83	36	0	119	43	0	70	0	113	76	153	0	0	229	461
Grand Total	0	167	65	0	232	85	. 0	142	0	227	174	323	0	0	497	956
Apprch %	0	72	28	0		37.4	0	62.6	0		35	65	ō	Õ	10.	000
Total %	0	17.5	6.8	0	24.3	8.9	0	14.9	0	23.7	18.2	33.8	Ö	Ö	52	
Cars	0	164	65	0	229	85	0	138	0	223	167	320	0	0	487	939
% Cars	0	98.2	100	0	98.7	100	0	97.2	0	98.2	96	99.1	ō	Õ	98	98.2
Trucks	0	3	0	0	3	0	0	4	0	4	7	3	0	0	10	17
% Trucks	0	1.8	0	0	1.3	0	0	2.8	0	1.8	4	0.9	0	0	2	1.8

TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Partition St


Date: Thursday, June 12, 2014

Counter: Miovision

File Name: Broadway 6 Weekday

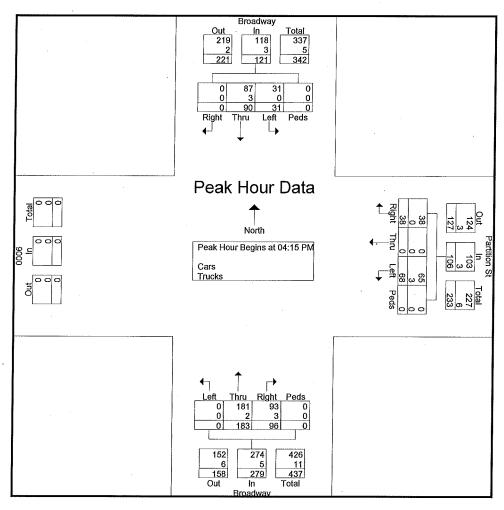
Site Code : 0006

Start Date : 6/12/2014

TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Partition St

Date: Thursday, June 12, 2014


Counter: Miovision

File Name: Broadway 6 Weekday

Site Code: 0006

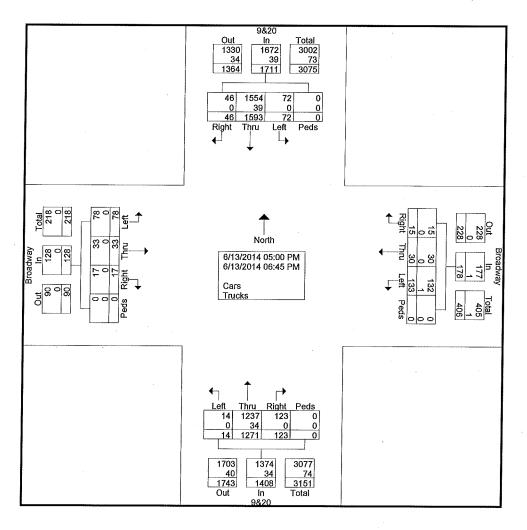
Start Date : 6/12/2014

			3roadwa outhbou				-	Partition Vestbou					Broadwa orthbou	,		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analy	sis From	04:00 PN	A to 05:0	00 PM - I	Peak 1 of 1		•			······						
Peak Hour for En	tire Inters	section B	egins at	04:15 P	M											
04:15 PM	0	23	2	0	. 25	11	0	13	0	24	25	40	0	0	65	114
04:30 PM	0	29	9	0	38	10	0	25	0	35	32	58	0	0	90	163
04:45 PM	0	17	8	0	25	5	0	17	0	22	20	39	0	0	59	106
05:00 PM	. 0	21	12	0	33	12	0	13	0	25	19	46	0	0	65	123
Total Volume	0	90	31	0	121	38	0	68	0	106	96	183	0	0	279	506
% App. Total	0	74.4	25.6	0		35.8	0	64.2	0		34.4	65.6	0	0		
PHF	.000	.776	.646	.000	.796	.792	.000	.680	.000	.757	.750	.789	.000	.000	.775	.776
Cars	0	87	31	0	118	38	0	65	0	103	93	181	0	0	274	495
% Cars	0	96.7	100	0	97.5	100	0	95.6	0	97.2	96.9	98.9	0	0	98.2	97.8
Trucks	0	3	0	0	3	0	0	3	0	3	3	2	0	0	5	11
% Trucks	0	3.3	0	0	2.5	0	0 .	4.4	0	2.8	3.1	1.1	0	0	1.8	2.2

2014 Traffic Counts (Friday evening)

TSTData.com

Location:Rensselaer, New York Intersection: Broadway @ 9&20 Date: Friday, June 13, 2014


Counter: MioVision

File Name: Broadway 1 Friday Final

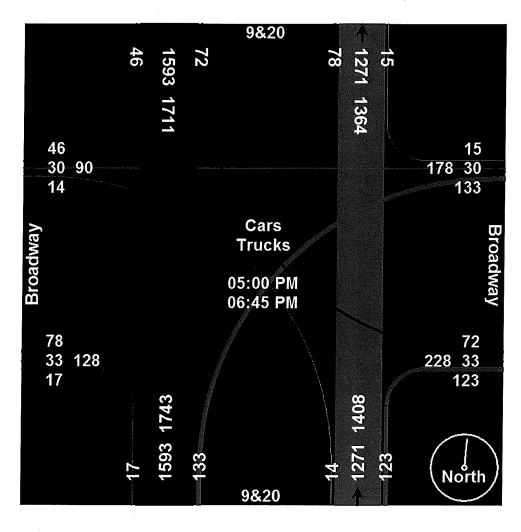
Site Code: 0001

Start Date : 6/13/2014

								Gı	oups F	Printed-	Cars -	Truck	s								
	İ		9&20				E	Broadw	ay ay				9&20)			Е	Broadw	ay		
			outhbo	und			V	/estbou	und			N	orthbo	und			E	astbou	ınd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App, Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	3	336	11	0	350	1	1	14	0	16	11	212	2	0	225	0	12	29	0	41	632
05:15 PM	10	306	11	0	327	1	4	19	0	24	16	178	1	0	195	5	6	8	0	19	565
05:30 PM	9	244	10	0	263	3	6	13	0	22	20	176	2	0	198	3	1	12	0	16	499
05:45 PM_	3	166	8	0	177	3	6	24	0	33	17	175	2	0	194	0	5	. 3	0	8	412
Total	25	1052	40	0	1117	8	17	70	0	95	64	741	7	0	812	8	24	52	0	84	2108
06:00 PM	8	172	12	0	192	2	3	25	0	30	20	141	2	0	163	2	4	9	0	12	397
06:15 PM	5	145	9	0	159	2	4	16	0	22	21	167	2	0	190	3	1	9	0	13	384
06:30 PM	5	123	4	0	132	1	2	14	0	17	9	114	2	0	125	2	7	5	0	14	288
06:45 PM	3	101	7	ő	111	2	4	8	Ő	14	9	108	1	0	118	2	,	3	0	5	248
Total	21	541	32	0	594	7	13	63	0	83	59	530		0	596	9	9	26	0	44	1317
		•	-	J	001	•	10	00		00	00	000	,	U	000	3	9	20	v	44	1317
Grand Total	46	1593	72	. 0	1711	15	30	133	0	178	123	1271	14	0	1408	17	33	78	. 0	128	3425
Apprch %	2.7	93.1	4.2	0		8.4	16.9	74.7	0		8.7	90.3	1	0	1	13.3	25.8	60.9	0		
Total %	1.3	46.5	2.1	0	50	0.4	0.9	3.9	0	5.2	3.6	37.1	0.4	0	41.1	0.5	1	2.3	0	3.7	
Cars	46	1554	72	0	1672	15	30	132	0	177	123	1237	14	0	1374	17	33	78	0	128	3351
% Cars	100	97.6	100	0	97.7	100	100	99.2	0	99.4	100	97.3	100	0	97.6	100	100	100	0	100	97.8
Trucks	0	39	0	0	39	0	0	1	0	1	. 0	34	0	0	34	0	0	0	0	0	74
% Trucks	0	2.4	0	0	2.3	0	0	8.0	0	0.6	0	2.7	0	0	2.4	0	0	0	0	0	2.2

TSTData.com

Location:Rensselaer, New York Intersection: Broadway @ 9&20


Date: Friday, June 13, 2014

Counter: MioVision

File Name: Broadway 1 Friday Final

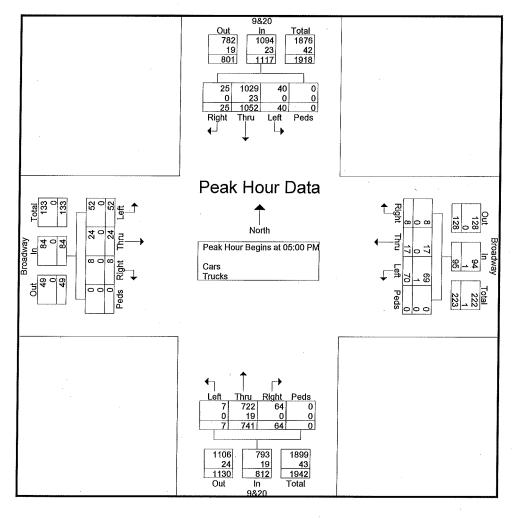
Site Code : 0001

Start Date : 6/13/2014

TSTData.com

Location:Rensselaer, New York Intersection: Broadway @ 9&20

Date: Friday, June 13, 2014


Counter: MioVision

File Name: Broadway 1 Friday Final

Site Code: 0001

Start Date : 6/13/2014

		Sc	9&20 uthbo					3roadw ∕estbou	,			N	9&20 orthbo					Broadw astbou	,		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar							< 1 of 1														
Peak Hour for	r Entire	Inters	ection I	Begins	at 05:0	0 PM															
05:00 PM	3	336	11	0	350	1	1	14	0	16	11	212	2	0	225	0	12	29	0	41	632
05:15 PM	10	306	11	0	327	1	4	19	0	24	16	178	1	0	195	5	6	8	0	19	565
05:30 PM	9	244	10	0	263	3	6	13	0	22	20	176	2	0	198	3	1	12	0	16	499
_ 05:45 PM	3	166	8	0	177	3	6	24	0	33	17	175	2	0	194	0	5	3	0.	8	412
Total Volume	25	1052	40	0	1117	8	17	70	0	95	64	741	7	0	812	8	24	52	0	84	2108
% App. Total	2.2	94.2	3.6	0		8.4	17.9	73.7	0		7.9	91.3	0.9	0		9.5	28.6	61.9	0		
PHF	.625	.783	.909	.000	.798	.667	.708	.729	.000	.720	.800	.874	.875	.000	.902	.400	.500	.448	.000	.512	.834
Cars	25	1029																			
% Cars	100	97.8	100	0	97.9	100	100	98.6	0	98.9	100	97.4	100	0	97.7	100	100	100	0	100	98.0
Trucks	0	23	0	0	23	0	0	1	0	1	0	19	0	0	19	0	0	0	0	0	43
% Trucks	0	2.2	0	0	2.1	0	0	1.4	0	1.1	0	2.6	0	0	2.3	0	0	0	0	0	2.0

TSTData.com

Location:Rensselaer, New York

Intersection: Broadway @ 3rd Avenue Date: Friday, June 13, 2014 Counter: Mio-Vision

File Name: Broadway 2 Friday

Site Code : 0002

Start Date : 6/13/2014

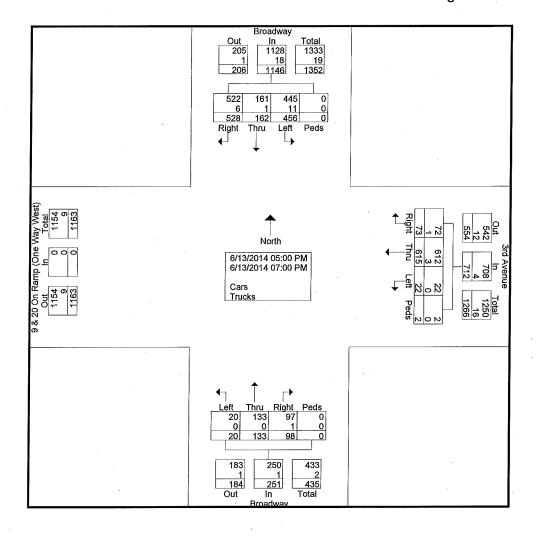
Groups	Printed-	- Cars -	Trucks
--------	----------	----------	--------

			Broadwa outhbou					rd Aven Vestbou	ue				Broadwa orthbou			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	119	20	83	0	222	7	141	3	1	152	18	22	2	0	42	416
05:15 PM	70	26	104	0	200	11	109	3	0	123	12	22	1	0	35	358
05:30 PM	42	14	66	0	122	10	83	5	0	98	. 15	17	3	0	35	255
05:45 PM	44	26	45	0	115	15	75	5	0	95	8	15	4	0	27	237
Total	275	86	298	0	659	43	408	16	1	468	53	76	10	0	139	1266
1					2 1						ı					
06:00 PM	120	31	37	0	188	9	82	2	0	93	15	22	3	0	40	321
06:15 PM	52	20	47	0	119	7	55	1	0	63	9	16	4	0	29	211
06:30 PM	52	12	44	0	108	7	43	1	0	51	12	9	1	0	22	181
06:45 PM	29	13	30	0	72	6	27	2	1_	36	9	10	2	0	21	129
Total	253	76	158	. 0	487	29	207	6	1	243	45	57	10	0	112	842
07:00 PM	^		0	0	0		0	•	0	. I	•			•	ا م	
Grand Total	0 530	160	0	0	0	70	0	0	0	740	0	0	0	0	0	7
	528 46.1	162	456	0	1146	73	615	22	2	712	98	133	20	0	251	2109
Apprch % Total %	46.1 25	14.1 7.7	39.8	0	540	10.3	86.4	3.1	0.3	00.0	39	53	8	0	44.0	
Cars	522	161	21.6	0	54.3	3.5	29.2	200	0.1	33.8	4.6	6.3	0.9	0	11.9	0000
% Cars	98.9	99.4	445 97.6	0	1128	72	612	22	2	708	97	133	20	0	250	2086
Trucks	90.9	22.4 1	11	0	98.4 18	98.6	99.5	100 0	100 0	99.4	99	100	100	0	99.6	98.9
% Trucks	1.1	0.6	2.4	0		1 1	-	•	•	4	1	0	0	0	1	23
70 TIUCKS	1.1	0.0	2.4	U	1.6	1.4	0.5	0	0	0.6	1	0	0	0	0.4	1.1

610 466-1469 TSTData.com

Location:Rensselaer, New York

Intersection: Broadway @ 3rd Avenue


Date: Friday, June 13, 2014

Counter: Mio-Vision

File Name: Broadway 2 Friday

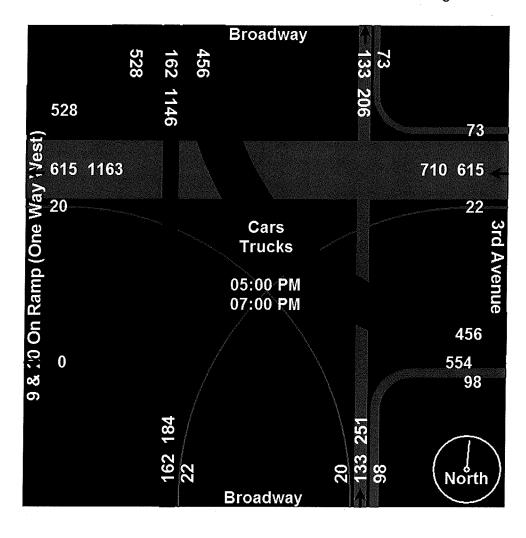
Site Code: 0002

Start Date : 6/13/2014

TSTData.com

Location:Rensselaer, New York

Intersection: Broadway @ 3rd Avenue


Date: Friday, June 13, 2014

Counter: Mio-Vision

File Name: Broadway 2 Friday

Site Code: 0002

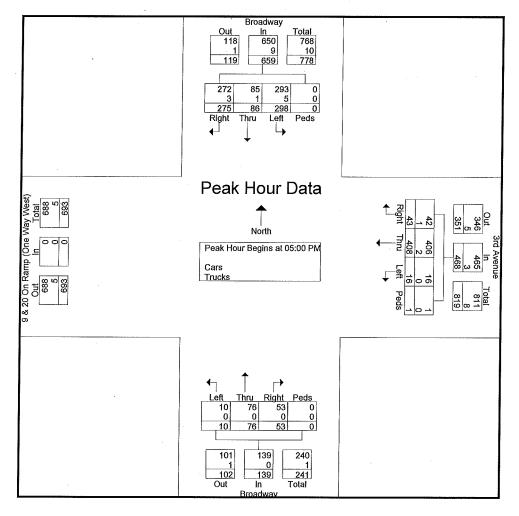
Start Date : 6/13/2014

TSTData.com

Location:Rensselaer, New York

Intersection: Broadway @ 3rd Avenue

Date: Friday, June 13, 2014


Counter: Mio-Vision

File Name: Broadway 2 Friday

Site Code : 0002

Start Date : 6/13/2014

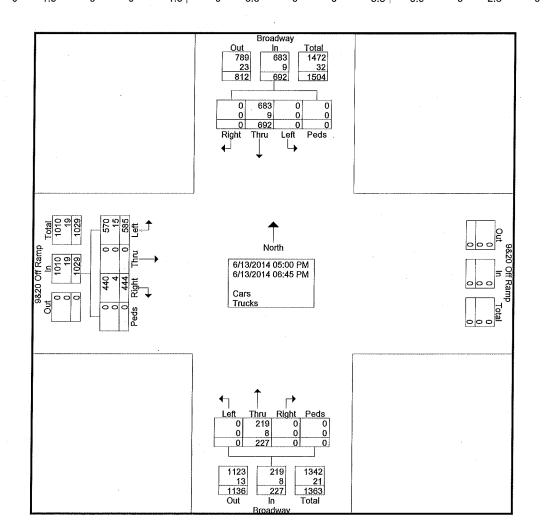
			3roadwa outhbou	,				rd Aven /estbou					Broadwa Iorthbou	,		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys						•	.,									
Peak Hour for En	tire Inters	section B	egins at	05:00 P	Μ.											
05:00 PM	119	20	83	0	222	7	141	3	1	152	18	22	2	0	42	416
05:15 PM	70	26	104	0	200	11	109	3	. 0	123	12	. 22	1	0	35	358
05:30 PM	42	14	66	0	122	10	83	5	0	98	15	17	3	0	35	255
05:45 PM	44	26	45	0	115	15	75	5	0	95	8	15	4	0	27	237
Total Volume	275	86	298	0	659	43	408	16	1	468	53	76	10	0	139	1266
% App. Total	41.7	13.1	45.2	0		9.2	87.2	3.4	0.2		38.1	54.7	7.2	0		
PHF	.578	.827	.716	.000	.742	.717	.723	.800	.250	.770	.736	.864	.625	.000	.827	.761
Cars	272	85 .	293	0	650	42	406	16	1	465	53	76	10	0	139	1254
% Cars	98.9	98.8	98.3	0	98.6	97.7	99.5	100	100	99.4	100	100	100	0	100	99.1
Trucks	3	1	5	0	9	. 1	2	0	0	3	0	0	0	. 0	0	12
% Trucks	1.1	1.2	1.7	0	1.4	2.3	0.5	0	0	0.6	0	0	0	0	0	0.9

TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ 9&20 Off Ramp

Date: Friday, June 13, 2014


Counter: BB

File Name: Broadway 3 Friday

Site Code : 0003

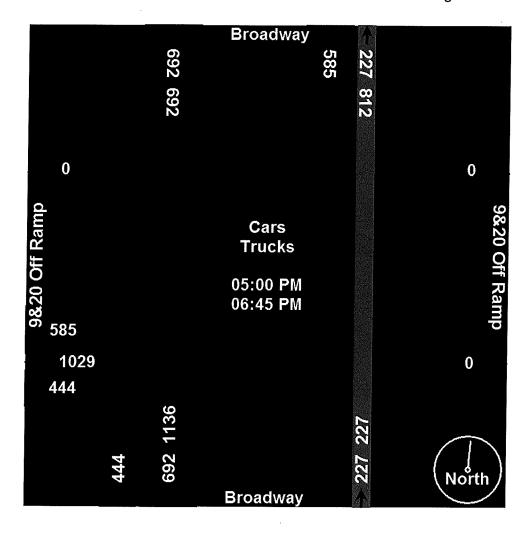
Start Date : 6/13/2014

			Broadwa	21/		Giou	ps Printe	Broadwa		(S		08.2	20 Off R	amn		1
			outhbou					orthbou					astbour			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	0	128	0	0	128	0	33	0	0	33	92	0	- 77	0	169	330
05:15 PM	0	86	0	0	86	0	35	0	0	35	98	0	99	0	197	318
05:30 PM	0	56	0	0	56	0	30	0	0	30	69	0	73	0	142	228
05:45 PM	0	93	0	0	93	0	35	0	0	35	31	0	51	0	82	210
Total	0	363	0	0	363	0	133	0	. 0	133	290	0	300	0	590	1086
06:00 PM	0	135	0	0	135	0	33	0	0	33	46	0	63	0	109	277
06:15 PM	0	77	0	0	77	0	25	0	0	25	40	. 0	72	0	112	214
06:30 PM	0	74	0	0	74	0	21	0	0	21	40	0	67	0	107	202
06:45 PM	0	43	0	0	43	0	15	0	. 0	15	28	0	83	0	111	169
Total	0	329	0	0	329	0	94	0	0	94	154	0	285	0	439	862
Grand Total	0	692	0	0	692	0	227	0	0	227	444	0	585	0	1029	1948
Apprch %	0	100	0	0	. [0	100	0	. 0		43.1	0	56.9	0		
Total %	0	35.5	0	0	35.5	0	11.7	0	0	11.7	22.8	0	30	0	52.8	
Cars	0	683	0	0	683	0	219	0	0	219	440	0	570	0	1010	1912
% Cars	0	98.7	0	0	98.7	0	96.5	0	. 0	96.5	99.1	0	97.4	0	98.2	98.2
Trucks	0	9	0	0	9	0	8	0	0	8	4	0	15	0	19	36
% Trucks	0	1.3	0	0	1.3	0	3.5	0	0	3.5	0.9	0 -	2.6	0	1.8	1.8

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ 9&20 Off Ramp


Date: Friday, June 13, 2014

Counter: BB

File Name: Broadway 3 Friday

Site Code : 0003

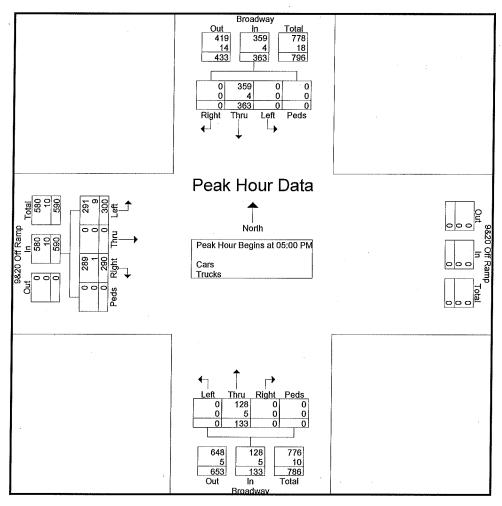
Start Date : 6/13/2014

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ 9&20 Off Ramp

Date: Friday, June 13, 2014


Counter: BB

File Name: Broadway 3 Friday

Site Code : 0003

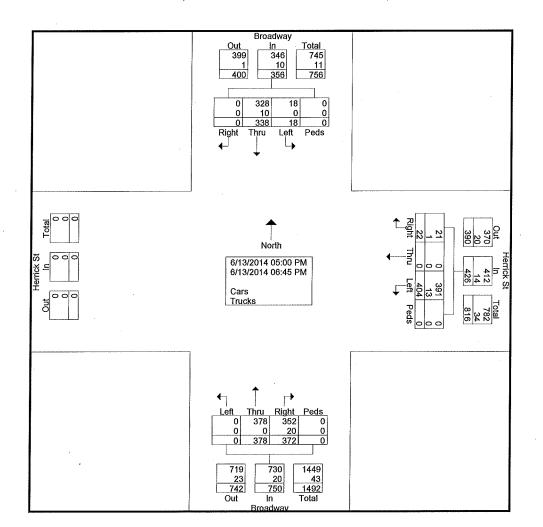
Start Date : 6/13/2014

			3roadwa outhbou	,				Broadwa Iorthbou					20 Off R Eastbour			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds ·	App. Total	Int. Total
Peak Hour Analys											'				,	·
Peak Hour for En	tire Inters	ection B	egins at	05:00 P	M											
05:00 PM	0	128	0	0	128	0	33	0	0	33	92	0	77	0	169	330
05:15 PM	0	86	0	0	86	0	35	0	0	35	98	0	99	0	197	318
05:30 PM	0	56	0	0	56	0	30	0	. 0	30	69	0	73	0	142	228
05:45 PM	0	93	0	0	93	0	35	0	0	35	31	0	51	0	82	210
Total Volume	0	363	0	ິ່. 0	363	0	133	0	0	133	290	0	300	0	590	1086
% App. Total	0	100	0	0		0	100	0	0		49.2	0	50.8	0		
PHF	.000	.709	.000	.000	.709	.000	.950	.000	.000	.950	.740	.000	.758	.000	.749	.823
Cars	0	359	0	0	359	0	128	0	0	128	289	0	291	0	580	1067
% Cars	0	98.9	0	0	98.9	0 1	96.2	0	0	96.2	99.7	0	97.0	0	98.3	98.3
Trucks	0	4	0	0	4	0	5	0	0	5	1	0	9	0	10	19
% Trucks	0	1.1	0	0	1.1	0	3.8	0	0	3.8	0.3	0	3.0	. 0	1.7	1.7

TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Herrick St

Date: Friday, June 13, 2014

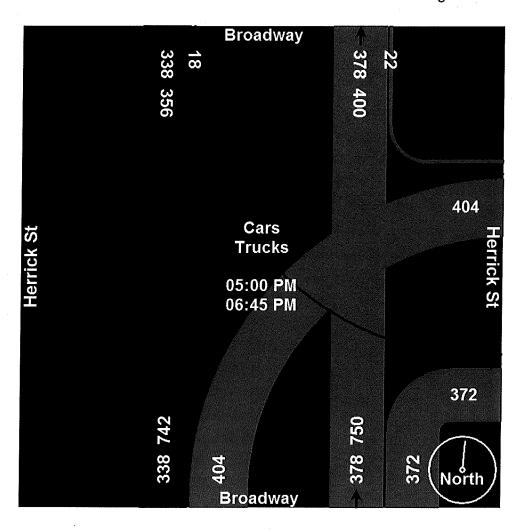

Counter: BK

File Name: Broadway 4 Friday

Site Code: 0004

Start Date : 6/13/2014

						Grou	ıps Printe	ed- Cars	- Truck	S						
		E	Broadwa	ay			ŀ	Herrick S	St				Broadwa	•		
		Ş	outhbou	ınd			N	<i>l</i> estbou	nd			Ņ.	<u>orthbou</u>	<u>nd</u>		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	0	43	6	0	49	8	0	94	0	102	34	63	0	0	97	248
05:15 PM	0	43	3	0	46	3	0	46	0	49	64	74	0	0	138	233
. 05:30 PM	- 0	35	2	0	37	2	0	24	0	26	50	45	0	0	95	158
05:45 PM	0	50	0	0	50	3_	0	41	. 0	44	38	37	0	0.	75	169
Total	0	171	11	0	182	16	0	205	0	221	186	219	0	0	405	808
06:00 PM	0	59	1	0	60	3	0	98	0	101	24	50	0	0	74	235
06:15 PM	0	50	3	0	53	2	0	33	0	35	49	39	0	0	88	176
06:30 PM	0	30	1	0	31	1	0	48	0	49	48	37	0	0	85	165
06:45 PM	0	28	2	0	30	0	0	20	0	20	65	33	0	0	98	148
Total	0	167	7	0	174	6	0	199	0	205	186	159	0	0 -	345	724
1					1					1			_	_		
Grand Total	0	338	18	0	356	22	0	404	0	426	372	378	0	0	750	1532
Apprch %	0	94.9	5.1	0	ĺ	5.2	0	94.8	0		49.6	50.4	0	0		
Total %	00	22.1	1.2	. 0	23.2	1.4	0	26.4	0	27.8	24.3	24.7	0	0	49	
Cars	0	328	18	0	346	21	0	391	0	412	352	378	0	0	730	1488
% Cars	0	97	100	0_	97.2	95.5	0_	96.8	0	96.7	94.6	100	0	0	97.3	97.1
Trucks	0	10	0	0	10	1	0	13	0	14	20	0	0	0	20	44
% Trucks	0	3	0	0	2.8	4.5	0	3.2	0	3.3	5.4	0	0	0	2.7	2.9


610 466-1469 TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Herrick St

Date: Friday, June 13, 2014 Counter: BK

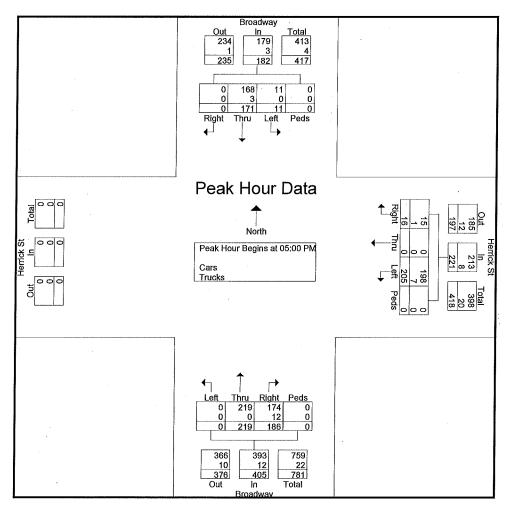
File Name: Broadway 4 Friday

Site Code : 0004 Start Date : 6/13/2014

610 466-1469 TSTData.com

Location: Rensselaer, New York Intersection: Broadway @ Herrick St

Date: Friday, June 13, 2014


Counter: BK

File Name: Broadway 4 Friday

Site Code : 0004

Start Date : 6/13/2014

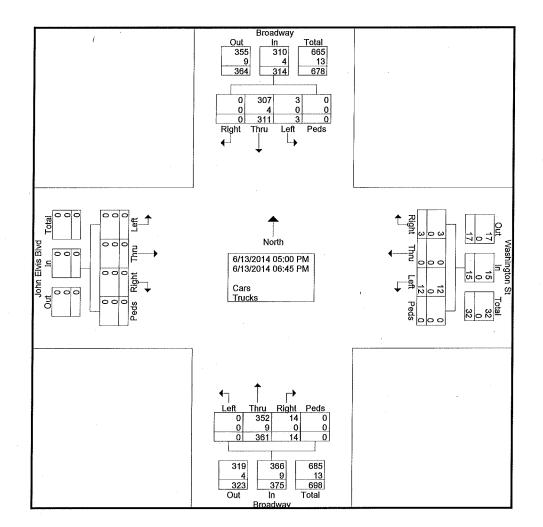
			3roadwa outhbou	,			-	Herrick S Vestbou					Broadwa Iorthbou	•		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	sis From	05:00 PN	/I to 06:4	5 PM - I	Peak 1 of 1								•			
Peak Hour for En	tire Inters	ection B	egins at	05:00 P	Μ.											
05:00 PM	0	43	6	0	49	8	0 ·	94	0	102	-34	63	0	0	97	248
05:15 PM	0	43	3	0	46	3	0	46	0	49	64	74	0	0	138	233
05:30 PM	0	35	2	0	37	2	0	24	0	26	50	45	0	0	95	158
05:45 PM	. 0	50	0	0	50	3	0_	41	0	44	38	37	0	0	75	169
Total Volume	0	171	11.	0	182	16	0	205	0	221	186	219	0	0	405	808
% App. Total	0	94	6	0		7.2	0	92.8	0		45.9	54.1	0	0		
PHF	.000	.855	.458	.000	.910	.500	.000	.545	.000	.542	.727	.740	.000	.000	.734	.815
Cars	0	168	11	0	179	15	0	198	0	213	174	219	0	. 0	393	785
% Cars	0	98.2	100	0	98.4	93.8	0	96.6	0	96.4	93.5	100	0	0	97.0	97.2
Trucks	0.	3	0	0	3	1	0	7	0	8	. 12	0	0	0	12	23
% Trucks	0	1.8	0	0	1.6	6.3	0	3.4	0	3.6	6.5	0 -	0	0.	3.0	2.8

TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ Washington St

Date: Friday, June 13, 2014


Counter: MB

File Name: Broadway 5 Friday

Site Code : 05

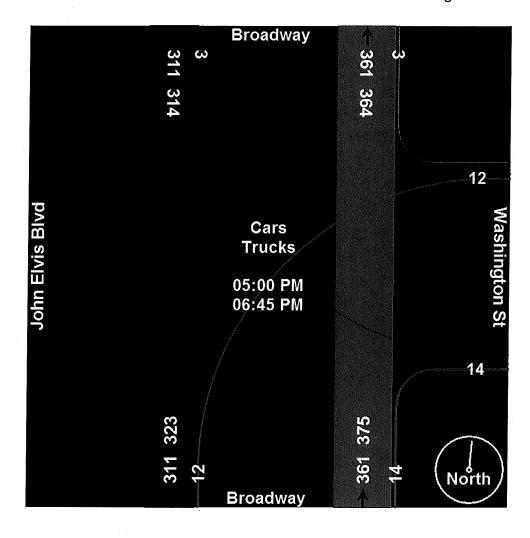
Start Date : 6/13/2014

								Gı	roups I	Printed-	Cars -	Trucks	3								
		Е	Broadw	ay			Was	shingte	on St			В	roadw	ay			Joh	n Elvis	Blvd		1
		Sc	uthbo	und			W	estbo	und			No	orthbou	und			E	astbou	ınd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	0	35	2	0	37	0	0	4	0	4	5	63	0	0	68	0	0	0	0	0	109
05:15 PM	0	40	1	0	41	0	0	1	0	1	2	69	0	0	71	. 0	0	0	0	0	113
05:30 PM	0	38	0	0	38	0	0	2	0	2	1	41	0	0	42	0	0	0	0	0	82
05:45 PM	0	44	0	0	44	1	0	0	0	1	0	37	0	0	37	0	0	0	0	0	82
Total	0	157	3	0	160	1	0	7	0	8	8	210	0	0	218	0	0	0	0	0	386
06:00 PM	0	51	0	0	51	2	0	1	0	3	1	50	0	0	51	0	0	0	0	0	105
06:15 PM	0	55	0	0	55	0	0	2	0	2	2	42	0	0	44	0	0	0	0	0	101
06:30 PM	0	26	0	0	26	0	Ô	0	0	0	1	31	0	0	32	0	0	0	0	0	58
06:45 PM	0	22	0	0	22	0	0	2	0	2	2	28	0	0	30	0	0	0	0	0	54
Total	0	154	0	0	154	2	0	5	0	7	6	151	0	0	157	0	0	0	0	0	318
Grand Total	0	311	3	0	314	3	0	12	0	15	14	361	0	0	375	0	0	0	0	0	704
Apprch %	0	99	1	0		20	0	80	0		3.7	96.3	0	0		0	0	0	0		
Total %	0	44.2	0.4	0	44.6	0.4	0	1.7	0	2.1	2	51.3	0	0	53.3	0	0	0	0	0	
Cars	0	307	3	0	310	3	0	12	. 0	15	14	352	0	0	366	0	0	0	0	0	691
% Cars	0	98.7	100	0	98.7	100	. 0	100	0	100	100	97.5	0	0	97.6	0	0	0	0	0	98.2
Trucks	0	4	0	0	4	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	13
% Trucks	0	1.3	0	0	1.3	0	0	0	0	0	0	2.5	0	0	2.4	0	0	0	0	0	1.8

TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ Washington St


Date: Friday, June 13, 2014

Counter: MB

File Name: Broadway 5 Friday

Site Code : 05

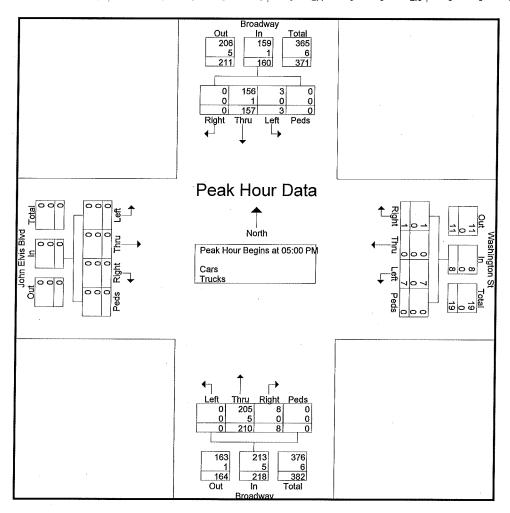
Start Date : 6/13/2014

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ Washington St

Date: Friday, June 13, 2014


Counter: MB

File Name: Broadway 5 Friday

Site Code : 05

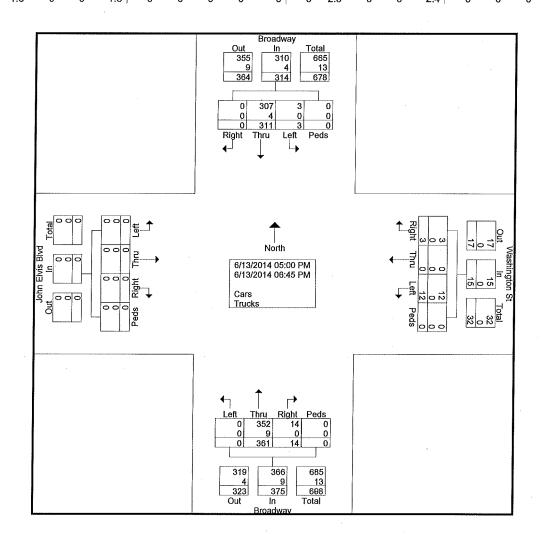
Start Date : 6/13/2014

			Broadw					shingto					Broadw					n Elvis			Ī
l	ļ.,	- ગ	outhbo	una			VV	estbou	ına			N	orthbo	una			ᆫ	astbou	ına		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From (05:00 F	M to 0	6:45 PN	1 - Peal	< 1 of 1										'				
Peak Hour fo	r Entire	Inters	ection	Begins	at 05:0	0 PM													_		
05:00 PM	0	35	2	0	37	0	0	4	0	4	5	63	0	0	68	0	0	0	• 0	0	109
05:15 PM	0	40	1	. 0	41	0	0	1	0	1	2	69	0	0	71	0	0	Ó	0	0	113
05:30 PM	0	38	0	- 0	38	0	0	2	0	2	1	41	0	0	42	0	0	0	0	0	82
05:45 PM	0	44	0	0	44	1	0	0	0	1	0	37	0	0	37	0	0	0	0	0	82
Total Volume	0	157	3	0	160	1	0	7	0	8	8	210	0	0	218	0	0	0	0	0	386
% App. Total	0	98.1	1.9	0		12.5	0	87.5	0		3.7	96.3	0	0		0	0	0	0		
PHF	.000	.892	.375	.000	.909	.250	.000	.438	.000	.500	.400	.761	.000	.000	.768	.000	.000	.000	.000	.000	.854
Cars	0	156	3	0	159	1	0	7	0	8	8	205	0	0	213	0	0	0	0	0	380
% Cars	0	99.4	100	0	99.4	100	0	100	0	100	100	97.6	0	0	97.7	0	0	0	0	0	98.4
Trucks	0	1	0	0	1	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	6
% Trucks	0	0.6	0	0	0.6	0	0	0	0	0	0	2,4	0	0	2.3	0	0	0	0	0	1.6

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ Washington St


Date: Friday, June 13, 2014 Counter: MB

File Name: Broadway 5 Friday

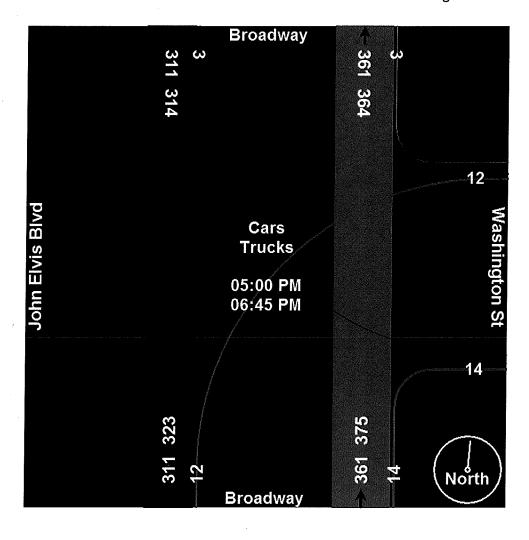
Site Code: 05

Start Date : 6/13/2014

								G	roups F	Printed-	Cars -	Trucks	3								
		E	3roadw	ay			Was	shingt	on St			E	Broadw	/ay			Johi	n Elvis	Blvd		
		S	outhbo	und			W	estbo	und			N	orthbo	und			E	astbou	ınd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	0	35	2	0	37	0	0	4	0	4	5	63	0	0	68	0	0	0	0	0	109
05:15 PM	0	40	1	0	41	0	0	1	0	1	2	69	0	0	71	0	0	0	0	0	113
05:30 PM	0	38	0	. 0	38	0	0	2	0	2	1	41	0	0	42	0	0	0	0	0	82
05:45 PM	0	44	0	0	44	1	0	0	0	1	0	37	0	0	37	0	0	0	0	0	82
Total	0	157	3	0	160	1	0	7	0	8	8	210	0	0	218	0	0	0	0	0	386
06:00 PM	0	51	0	0	51	2	0	1	0	3	1	50	0	0	51	0	0	0	0	0	105
06:15 PM	0	55	0	0	55	0	0	2	0	2	2	42	0	0	44	0	0	0	0	0	101
06:30 PM	0	26	0	0	26	0	0	0	0	0	1	31	0	0	32	0	0	0	0	0	58
06:45 PM	0	22	0	0	22	0	0	2	0	2	2	28	0	0	30	0	0	0	0	0	54
Total	0	154	0	0	154	2	0	5	0	7	6	151	0	0	157	0	0	0	0	0	318
Grand Total	0	311	3	0	314	3	0	12	0	15	14	361	. 0	0	375	0	0	0	0	. 0	704
Apprch %	0	99	1	0		20	0	80	0		3.7	96.3	0	0		0	0	0	0		
Total %	0	44.2	0.4	0	44.6	0.4	0	1.7	0	2.1	2	51.3	0	0	53.3	0	0	0	0	0	
Cars	0	307	3	0	310	3	0	12	0	15	14	352	0	0	366	0	0	0	0	0	691
% Cars	0	98.7	100	0	98.7	100	0	100	0	100	100	97.5	0	0	97.6	0	0	0	0	0	98.2
Trucks	0	4	0	0	4	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	13
% Trucks	0	1.3	0	0	1.3	0	0	0	0	0	0	2.5	0	0	2.4	0	0	0	0	0	1.8

610 466-1469 TSTData.com

Location: Rensselaer, New York


Intersection: Broadway @ Washington St

Date: Friday, June 13, 2014 Counter: MB

File Name: Broadway 5 Friday

Site Code : 05

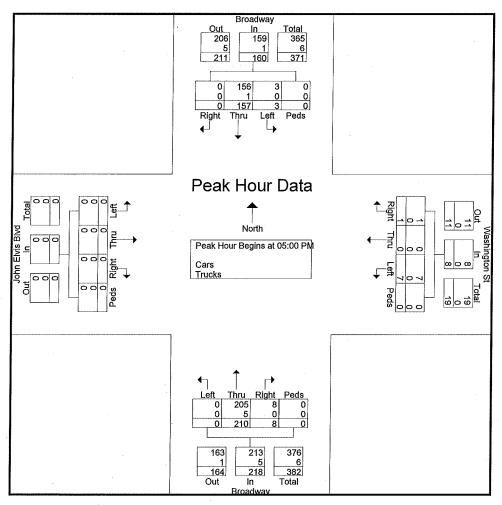
Start Date : 6/13/2014

610 466-1469 TSTData.com

Location: Rensselaer, New York

Intersection: Broadway @ Washington St

Date: Friday, June 13, 2014


Counter: MB

File Name: Broadway 5 Friday

Site Code : 05

Start Date : 6/13/2014

			roadw outhbo	,				shingto estboo					roadw orthbo		,	,		n Elvis astboเ			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	înt. Total
Peak Hour Ar							(1 of 1														
Peak Hour for	r Entire	Inters	ection	Begins	at 05:0	0 PM															
05:00 PM	0	. 35	2	0	37	0	0	4	0	4	5	63	0	0	68	0	. 0	0	0	0	109
05:15 PM	0	40	1	0	41	0	0	1	0	1	2	69	0	0	71	0	0	. 0	0	0	113
05:30 PM	0	38	0	0	38	0	0	2	0	2	1	41	0	0	42	0	0	0	0	0	82
05:45 PM	0	44	0	0	44	1	0	0	0	1	0	37	0	0	37	0	0	0	0	0	82
Total Volume	0	157	3	0	160	1	0	7	0	8	8	210	0	0	218	0	0	0	0	0	386
% App. Total	0	98.1	1.9	0		12.5	0	87.5	0		3.7	96.3	0	0		0	0	0	0		
PHF	.000	.892	.375	.000	.909	.250	.000	.438	.000	.500	.400	.761	.000	.000	.768	.000	.000	.000	.000	.000	.854
Cars	0	156	3	0	159	1	0	7	0	8	8	205	0	0	213	0	0	0	0	0	380
% Cars	0	99.4	100	0	99.4	100	0	100	0	100	100	97.6	0	0	97.7	0	0	0	0	0	98.4
Trucks	0	1	0	0	1	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	6
% Trucks	0	0.6	0	0	0.6	0	0	.0	0	0	0	2.4	0	0	2.3	0	0	0	0	. 0	1.6

